Skip to main content
Log in

MLPG approximation to the p-Laplace problem

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Meshless local Petrov-Galerkin (MLPG) method is discussed for solving 2D, nonlinear, elliptic p-Laplace or p-harmonic equation in this article. The problem is transferred to corresponding local boundary integral equation (LBIE) using Divergence theorem. The analyzed domain is divided into small circular sub-domains to which the LBIE is applied. To approximate the unknown physical quantities, nodal points spread over the analyzed domain and MLS approximation, are utilized. The method is a meshless method, since it does not require any background interpolation and integration cells and it dose not depend on geometry of domain. The proposed scheme is simple and computationally attractive. Applications are demonstrated through illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronsson G, Janfalk U (1992) On Hele-Shaw flow of power-law fluids. Eur J Appl Math 3: 343–366

    Article  MATH  MathSciNet  Google Scholar 

  2. Hieber CA, Shen SF (1979) A finite-element/finite difference simulation of the injectionmoulding filling process. J Non Newton Fluid Mech 7: 1–32

    Article  Google Scholar 

  3. Bernal F, Kindelan M (2007) RBF meshless modeling of non-Newtonian Hele-Shaw flow. Eng Anal Bound Elem 31: 863–874

    Article  Google Scholar 

  4. Bernal F, Kindelan M (2009) A meshless solution to the p-Laplace equation. In: Ferreira AJM, Kansa EJ, Fasshauer GE, Leitão VMA (eds) Computational methods in applied sciences. Progress on meshless methods, Barcelona Spain

    Google Scholar 

  5. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82(12): 1013–1024

    Article  Google Scholar 

  6. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37: 229–256

    Article  MATH  MathSciNet  Google Scholar 

  7. Duarte CA, Oden JT (1996) H-p clouds-an hp meshless method. Numer Methods Partial Differ Equ 12: 673–705

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu W, Jun S, Zhang Y (1995) Reproducing kernel particle method. Int J Numer Methods Fluids 20: 1081–1106

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38: 1655–1679

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of nonlinear structures. Comput Methods Appl Mech Eng 139: 195–228

    Article  MATH  MathSciNet  Google Scholar 

  11. Liu WK, Li S, Belytschko T (1997) Moving least squares reproducing kernel methods. Part I: methodology and convergence. Comput Methods Appl Mech Eng 143: 113–154

    Article  MATH  MathSciNet  Google Scholar 

  12. Han W, Meng X (2001) Error analysis of the reproducing kernel particle method. Comput Methods Appl Mech Eng 190: 6157–6181

    Article  MATH  MathSciNet  Google Scholar 

  13. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  14. Lee CK, Lie ST, Shuai YY (2004) On coupling of reproducing kernel particle method and boundary element method. Comput Mech 34: 282–297

    Article  MATH  MathSciNet  Google Scholar 

  15. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10: 307–318

    Article  MATH  Google Scholar 

  16. Melenk JM, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139: 289–314

    Article  MATH  MathSciNet  Google Scholar 

  17. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Methods Eng 43: 839–887

    Article  MATH  MathSciNet  Google Scholar 

  18. Mukherjee YX, Mukherjee S (1997) The boundary node method for potential problems. Int J Numer Methods Eng 40: 797–815

    Article  MATH  Google Scholar 

  19. Kim DW, Liu WK (2006) Maximum principle and convergence analysis for the meshfree point collocation method. SIAM J Numer Anal 44(2): 515–539

    Article  MATH  MathSciNet  Google Scholar 

  20. Kim DW, Yoon Y-C, Liu WK, Belytschko T (2007) Extrinsic meshfree approximation using asymptotic expansion for interfacial discontinuity of derivative. J Comput Phys 221: 370–394

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim DW, Liu WK, Yoon Y-C, Belytschko T, Lee S-H (2007) Meshfree point collocation method with intrinsic enrichment for interface problems. Comput Mech 40: 1037–1052

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhu T, Zhang JD, Atluri SN (1998) A local boundary integral equation (LBIE) method in computational mechanics and a meshless discretization approach. Comput Mech 21: 223–235

    Article  MATH  MathSciNet  Google Scholar 

  23. Dehghan M, Mirzaei D (2009) Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes. Comput Phys Commun 180: 1458–1466

    Article  Google Scholar 

  24. Dehghan M, Mirzaei D (2008) Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method. Int J Numer Methods Eng 76: 501–520

    Article  MathSciNet  Google Scholar 

  25. Mirzaei D, Dehghan M (2009) Implementation of meshless LBIE method to the 2D non-linear SG problem. Int J Numer Methods Eng 79: 1662–1682

    Article  MATH  MathSciNet  Google Scholar 

  26. Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2): 117–127

    Article  MATH  MathSciNet  Google Scholar 

  27. Atluri SN, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method. Tech Science Press, Los Angeles, CA

    MATH  Google Scholar 

  28. Atluri SN, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method: a simple and lesscostly alternative to the finite element and boundary element methods. CMES Comput Model Eng Sci 3(1): 11–52

    MATH  MathSciNet  Google Scholar 

  29. Atluri SN, Shen Sh (2005) The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method. Adv Comput Math 23: 73–93

    Article  MATH  MathSciNet  Google Scholar 

  30. Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation. Eng Anal Bound Elem 32: 747–756

    Article  Google Scholar 

  31. Dehghan M, Mirzaei D (2009) Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59: 1043–1058

    Article  MATH  MathSciNet  Google Scholar 

  32. Mirzaei D, Dehghan M (2010) Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation. J Comput Appl Math 233: 2737–2754

    Article  MATH  MathSciNet  Google Scholar 

  33. Sladek J, Sladek V, Zhang Ch, Schanz M (2006) Meshless local Petrov-Galerkin method for continuously nonhomogeneous linear viscoelastic solids. Comput Mech 37: 279–289

    Article  MATH  Google Scholar 

  34. Sladek J, Sladek V, Hellmich Ch, Eberhardsteiner J (2007) Heat conduction analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method. Comput Mech 29: 323–333

    Google Scholar 

  35. Sladek J, Sladek V, Solek P, Zhang Ch (2010) Fracture analysis in continuously nonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG. Int J Solids Struct 47: 1381–1391

    Article  Google Scholar 

  36. Qian LF, Batra RC (2005) Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin method. Comput Mech 35: 214–226

    Article  MATH  Google Scholar 

  37. Gilhooley DF, Xiao JR, Batra RC, McCarthy MA, Gillespie JW Jr (2008) Two-dimensional stress analysis of functionally graded solids using the MLPG method with radial basis functions. Comput Mater Sci 41(4): 467–481

    Article  Google Scholar 

  38. Shepard D (1968) A two-dimensional interpolation function for irregularly spaced points. In: Proceedings of the 23rd ACM National Conference, ACM Press, New York, pp 517–524

  39. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37: 141–158

    MATH  MathSciNet  Google Scholar 

  40. Zuppa C (2003) Error estimates for moving least square approximations. Bull Brazil Math Soc 34(2): 231–249

    Article  MATH  MathSciNet  Google Scholar 

  41. Liu KY, Long SY, Li GY (2006) A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem. Eng Anal Bound Elem 30: 72–76

    Article  MATH  Google Scholar 

  42. Hu DA, Long SY, Liu KY, Li GY (2006) A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation. Eng Anal Bound Elem 30: 399–404

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzaei, D., Dehghan, M. MLPG approximation to the p-Laplace problem. Comput Mech 46, 805–812 (2010). https://doi.org/10.1007/s00466-010-0521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0521-1

Keywords

Navigation