Skip to main content
Log in

Multiscale stochastic finite element modeling of random elastic heterogeneous materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In Xu et al. (Comput Struct 87:1416–1426, 2009) a novel Green-function-based multiscale stochastic finite element method (MSFEM) was proposed to model boundary value problems involving random heterogeneous materials. In this paper, we describe in detail computational aspects of the MSFEM explicitly across macro–meso–micro scales. Different numerical algorithms are introduced and compared in terms of numerical accuracy and convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams RA (1975) Sobolev spaces. Academic Press, New York

    MATH  Google Scholar 

  2. Bensoussan A, Lions L, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, Amsterdam

    MATH  Google Scholar 

  3. Charmpis DC, Schueller GI, Pellissetti MF (2007) The need for linking micromechaincs of materials with stochastic finite elements: a challenge for material science. Comput Mater Sci 41: 27–37

    Article  Google Scholar 

  4. Chen JS, Mehraeen S (2005) Multi-scale modeling of heterogeneous materials with fixed and evolving microstructures. Model Simul Mater Sci Eng 13: 95–121

    Article  Google Scholar 

  5. Der Kiureghian A, Ke JB (1988) The stochastic finite element method in structural reliability. Probab Eng Mech 3: 83–91

    Article  Google Scholar 

  6. Fish J, Chen W (2004) Discrete-to-continuum bridging based on multigrid principles. Comput Methods Appl Mech Eng 193: 1693–1711

    Article  MATH  MathSciNet  Google Scholar 

  7. Ghosh S, Bai J, Raghavan P (2007) Concurrent multi-level models for damage evolution in microstructurally debonding composites. Mech Mater 39: 241–266

    Article  Google Scholar 

  8. Ghosh S, Lee K, Moorthy S (1996) Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and voronoi cell finite element model. Comput Methods Appl Mech Eng 132(1–2): 63–116

    Article  MATH  Google Scholar 

  9. Guidault PA, Allix O, Champaney L, Navarro JP (2007) A two-scale approach with homogenization for the computation of cracked structures. Comput Struct 85(17–18): 1360–1371

    Article  MathSciNet  Google Scholar 

  10. Halpin JC, Kardos JL (1976) Halpin-Tsai equations: a review. Polym Eng Sci 16(5): 344–352

    Article  Google Scholar 

  11. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behavior of multiphase materials. J Mech Phys Solids 11: 127–140

    Article  MATH  MathSciNet  Google Scholar 

  12. Hutchinson JW, Evans AG (2000) Mechanics of materials: top-down approaches to fracture. Acta Mater 48: 125–135

    Article  Google Scholar 

  13. Ibrahimbegovic A, Markovic D (2003) Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures. Comput Methods Appl Mech Eng 192: 3089–3107

    Article  MATH  Google Scholar 

  14. Kaminński M (2006) On generalized stochastic perturbation-based finite element method. Commun Numer Methods Eng 22(1): 23–31

    Article  MathSciNet  Google Scholar 

  15. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14): 3647–3679

    Article  MATH  Google Scholar 

  16. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27: 37–48

    Article  MATH  Google Scholar 

  17. Kröner E (1972) Statistical continuum mechanics. Springer-Verlag, Wien

    MATH  Google Scholar 

  18. Ladeveze P (2004) Multiscale modeling and computational strategies for composites. Int J Numer Methods Eng 60: 233–253

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu WK, McVeigh C (2008) Predictive multiscale theory for design of heterogeneous materials. Comput Mech 42(2): 147–170

    Article  MATH  MathSciNet  Google Scholar 

  20. Miehe C, Bayreuther CG (2007) On multiscale FE analyses of heterogeneous structures: from homogenization to multigrid solvers. Int J Numer Methods Eng 71(10): 1135–1180

    Article  MathSciNet  Google Scholar 

  21. Milton GW (2002) The theory of composites. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  22. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. North-Holland, Amsterdam

    Google Scholar 

  23. Oden JT, Vemaganti KS (2000) Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials I: error estimates and adaptive algorithms. J Comput Phys 164: 22

    Article  MATH  MathSciNet  Google Scholar 

  24. Ostoja-Starzewski M, Du X, Khisaeva Z, Li W (2007) Comparisons of the size of representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures. Int J Multiscale Comput Eng 5(2): 73–82

    Article  Google Scholar 

  25. Pindera MJ, Aboudi J, Arnold SM (1995) Limitations of the uncoupled, RVE-based micromechanical approach in the analysis of functionally graded composites. Mech Mater 20: 77–94

    Article  Google Scholar 

  26. Sanchez-Palencia E (1980) Nonhomogeneous media and vibration theory. Lecture Notes in Physics, vol 127. Springer, Berlin

  27. Vanmarcke EH, Grigoriu M (1983) Stochastic finite element analysis of simple beams. J Eng Mech ASCE 109: 1203–1214

    Article  Google Scholar 

  28. E W, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Comput Phys Commun 2(3): 367–450

    MATH  Google Scholar 

  29. Weng GJ (1990) The theoretical connection between Mori- Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds. Int J Eng Sci 28: 1111–1120

    Article  MATH  MathSciNet  Google Scholar 

  30. Xu XF (2007) A multiscale stochastic finite element method on elliptic problems involving uncertainties. Comput Methods Appl Mech Eng 196(25–28): 2723–2736

    Article  MATH  Google Scholar 

  31. Xu XF (2009) Generalized variational principles for uncertainty quantification of boundary value problems of random heterogeneous materials. ASCE J Eng Mech 135(10): 1180–1188

    Article  Google Scholar 

  32. Xu XF, Chen X (2009) Stochastic homogenization of random multi-phase composites and size quantification of representative volume element. Mech Mater 41(2): 174–186

    Article  Google Scholar 

  33. Xu XF, Chen X, Shen L (2009) A Green-function-based multiscale method for uncertainty quantification of finite body heterogeneous materials. Comput Struct 87: 1416–1426

    Article  Google Scholar 

  34. Zohdi TI, Wriggers P (2001) A model for simulating the deterioration of structural-scale material responses of microheterogeneous solids. Comput Methods Appl Mech Eng 190: 2803–2823

    Article  MATH  Google Scholar 

  35. Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer-Verlag, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Frank Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Xu, X.F. Multiscale stochastic finite element modeling of random elastic heterogeneous materials. Comput Mech 45, 607–621 (2010). https://doi.org/10.1007/s00466-010-0474-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0474-4

Keywords

Navigation