Skip to main content
Log in

Some computational aspects for solving deep penetration problems in geomechanics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Penetration problems in geomechanics involve the insertion or intrusion of solid bodies into the ground. Such problems are extremely difficult to model numerically, because they usually involve severe mesh distortion caused by large deformation and frictional contact. In this paper, an Arbitrary Lagrangian–Eulerian method is used to overcome the mesh distortion problem. Some specific issues associated with the ALE method, such as node relocation and remapping of contact history variables, are discussed. The ALE method, incorporated with an automatic load stepping scheme and a smooth contact discretisation technique, is then used to analyse the penetration of axial displacement piles into the ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbo AJ, Sloan SW (1996) An automatic load stepping algorithm with error control. Int J Numer Methods Eng 39: 1737–1759

    Article  MATH  MathSciNet  Google Scholar 

  2. Benson DJ (1989) An efficient, accurate and simple ALE method for nonlinear finite element programs. Comp Methods Appl Mech Eng 72: 305–350

    Article  MATH  Google Scholar 

  3. Belytschko T, Kennedy JM (1978) Computer models for subassembly simulation. Nucl Eng Des 49: 17–38

    Article  Google Scholar 

  4. Fischer KA, Wriggers P (2006) Motar based frictional contact formulation for higher order interpolation using the moving friction cone. Comp Methods Appl Mech Eng 195(37–40): 5020–5036

    Article  MATH  MathSciNet  Google Scholar 

  5. Fischer KA, Sheng D, Abbo AJ (2007) Modeling of pile installation using contact mechanics and quadratic elements. Comp Geotech 34(6): 449–461

    Article  Google Scholar 

  6. Gadala MS, Wang J (1998) ALE formulation and its application in solid mechanics. Comp Methods Appl Mech Eng 167: 33–55

    Article  MATH  MathSciNet  Google Scholar 

  7. Ghosh S, Kikuchi N (1991) An arbitrary Lagrangian–Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids. Comp Methods Appl Mech Eng 86: 127–188

    Article  MATH  Google Scholar 

  8. Hu Y, Randolph MF (1998) A practical numerical approach for large deformation problems in soils. Int J Numer Anal Methods Geomech 22: 327–350

    Article  MATH  Google Scholar 

  9. Huang W, Sheng D, Sloan SW, Yu HS (2004) Finite element analysis of cone penetration in cohesionless soil. Comp Geotech 31: 517–528

    Article  Google Scholar 

  10. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flow. Comp Methods Appl Mech Eng 58: 19–36

    MathSciNet  Google Scholar 

  11. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  12. Liu WK, Belytschko T, Chang H (1986) An arbitrary Lagrangian–Eulerian finite element method for path-dependant materials. Comp Methods Appl Mech Eng 58: 227–245

    Article  MATH  Google Scholar 

  13. Liyanapathirana DS, Deeks AJ, Randolph MF (2000) Numerical modelling of large deformations associated with driving of open-ended piles. Int J Numer Anal Meth Geomech 24: 1079–1101

    Article  MATH  Google Scholar 

  14. Lopez RJ (2001) Advanced engineering mathematics. Addison Wesley, New York

    Google Scholar 

  15. Nazem M (2006) Numerical algorithms for large deformation problems in geomechanics. Ph.D. thesis, School of Engineering, The University of Newcastle, Australia

  16. Nazem M, Sheng D, Carter JP (2006) Stress integration and meshing refinement for large deformation in geomechanics. Int J Numer Methods Eng 65: 1002–1027

    Article  MATH  Google Scholar 

  17. Peric D, Hochard C, Dutko M, Owen DRJ (1996) Transfer operators for solving meshes in small strain elasto-plasticity. Comp Methods Appl Mech Eng 137: 331–344

    Article  MATH  Google Scholar 

  18. Peric D, Vaz M Jr, Owen DRJ (1999) On adaptive strategies for large deformations of elasto-plastic solids at finite strains: computational issues and industrial applications. Comp Methods Appl Mech Eng 176: 279–312

    Article  MATH  Google Scholar 

  19. Potts DM, Zdravkovic L (2001) Finite element analysis in geotechnical engineering, vol 1, theory. Thomas Telford, London

    Google Scholar 

  20. Sheng D, Axelsson K, Magnusson O (1997) Stress and strain fields around a penetrating cone. In: Pietruszczak S, Pande GN (eds) Numerical models in geomechanics. Balkema, Rotterdam, pp 653–660

    Google Scholar 

  21. Sheng D, Eigenbrod KD, Wriggers P (2005) Finite element analysis of pile installation using large-slip frictional contact. Comp Geotech 32(1): 17–26

    Article  Google Scholar 

  22. Sheng D, Sloan SW, Yu HS (2000) Aspects of finite element implementation of critical state models. Comput Mech 26: 185–196

    Article  MATH  Google Scholar 

  23. Sheng D, Sloan SW (2001) Load stepping methods for critical state models. Int J Numer Methods Eng 50: 67–93

    Article  MATH  Google Scholar 

  24. Sheng D, Wriggers P, Sloan SW (2006) Improved numerical algorithms for friction contact in pile penetration analysis. Comp Geotech 33: 341–354

    Article  Google Scholar 

  25. Sheng D (2007) Frictional contact for pile installation. In: Wriggers P, Nackenhorst U (eds) IUTAM symposium on computational methods in contact mechanics. Springer, Heidelberg, pp 239–256

    Chapter  Google Scholar 

  26. Simo JC, Meschke G (1993) A new class of algorithms for classical plasticity extended to finite strains. Appl Geomater Computat Mech 11: 253–278

    MATH  MathSciNet  Google Scholar 

  27. Sloan SW, Randolph MF (1984) Numerical prediction of collapse loads using finite element methods. Int J Numer Anal Methods Geomechan 6: 47–76

    Article  Google Scholar 

  28. Susila E, Hryciw RD (2003) Large displacement FEM modelling of the cone penetration test (CPT) in normally consolidated sand. Int J Numer Anal Methods Geomech 27: 585–602

    Article  MATH  Google Scholar 

  29. Van den Berg P (1994) Analysis of soil penetration. Ph.D. thesis, Technische Universiteit Delft

  30. Wang CX, Carter JP (2002) Deep penetration of strip and circular footings into layered clays. Int J Geomech 2(2): 205–232

    Article  Google Scholar 

  31. Wriggers P (2002) Computational contact mechanics. Wiley, Chichester

    Google Scholar 

  32. Yamada T, Kikuchi F (1993) An arbitrary Lagrangian–Eulerian finite element method for incompressible hyperelasticity. Comp Methods Appl Mech Eng 102: 149–177

    Article  MATH  MathSciNet  Google Scholar 

  33. Yu HS (2004) Cavity expansion methods in geomechanics. Kluwer, Dordrecht

    Google Scholar 

  34. Zhou H, Randolph MF (2007) Computational techniques and shear band development for cylindrical and spherical penetrometers in strain-softening clay. Int J Geomech ASCE 7(4): 287–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichao Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, D., Nazem, M. & Carter, J.P. Some computational aspects for solving deep penetration problems in geomechanics. Comput Mech 44, 549–561 (2009). https://doi.org/10.1007/s00466-009-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0391-6

Keywords

Navigation