Skip to main content
Log in

A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The development of a hybrid high order time domain finite element solution procedure for the simulation of two dimensional problems in computational electromagnetics is considered. The chosen application area is that of electromagnetic scattering. The spatial approximation adopted incorporates both a continuous Galerkin spectral element method and a high order discontinuous Galerkin method. Temporal discretisation is achieved by means of a fourth order Runge–Kutta procedure. An exact analytical solution is employed initially to validate the procedure and the numerical performance is then demonstrated for a number of more challenging examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balanis CA (1989) Advanced engineering electromagnetics. Wiley, New York

    Google Scholar 

  2. Bérenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114: 185–200

    Article  MATH  MathSciNet  Google Scholar 

  3. Bos L, Taylor MA, Wingate BA (2000) Tensor product Gauss–Lobatto points are Fekete points for the cube. Math Comput 70: 1543–1547

    Article  MathSciNet  Google Scholar 

  4. Chew WC (2004) Computational electromagnetics: the physics of smooth versus oscillatory fields. Philos Trans Royal Soc Math Phys Eng Sci 362: 579–602

    Article  MATH  MathSciNet  Google Scholar 

  5. Cioni JP, Fezoui L, Steve H (1993) A parallel time–domain Maxwell solver using upwind schemes and triangular meshes. IMPACT Comput Sci Eng 5: 215–247

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn B, Shu CW (2001) Runge–Kutta discontinuous Galerkin methods for convection dominated problems. J Sci Comput 16: 173–261

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen GC (2002) High–order numerical methods for transient wave equations. Springer, Berlin

    Google Scholar 

  8. Darve E, Havé P (2004) A fast multipole method for Maxwell’s equations stable at all frequencies. Philos Trans Roy Soc Math Phys Eng Sci 362: 603–628

    Article  MATH  Google Scholar 

  9. Darve E, Löhner R (1997) Advanced structured–unstructured solver for electromagnetic scattering from multimaterial objects. AIAA Paper 97–0863. AIAA, Washington

  10. Davies RW (2007) A hybrid spectral element method for the time domain solution of wave scattering problems. PhD Thesis, Swansea University

  11. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Chichester

    Book  Google Scholar 

  12. El Hachemi M, Hassan O, Morgan K, Rowse DP, Weatherill NP (2003) Hybrid methods for electromagnetic scattering simulations on overlapping grids. Commun Numer Methods Eng 19: 749–760

    Article  MATH  Google Scholar 

  13. Hesthaven JS, Warburton T (2002) Nodal high–order methods on unstructured grids I: time–domain solution of Maxwell’s equations. J Comput Phys 181: 186–221

    Article  MATH  MathSciNet  Google Scholar 

  14. Hesthaven JS, Warburton T (2004) High order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos Trans Roy Soc Math Phys Eng Sci 362: 493–524

    Article  MATH  MathSciNet  Google Scholar 

  15. Komatitsch D, Vilotte JP, Vai R, Castillo–Covarrubias JM (1999) The spectral element method for elastic wave equations—application to 2D and 3D seismic problems. Int J Numer Methods Eng 45: 1139–1164

    Article  MATH  Google Scholar 

  16. Komatitsch D, Martin R, Tromp J, Taylor MA, Wingate BA (2002) Wave propagation in 2D elastic media using a spectral element method with triangles and quadrangles. J Comput Acoust 92: 703–718

    Google Scholar 

  17. Kopriva DA, Woodruff SL, Hussaini MY (2002) Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int J Numer Methods Eng 53: 105–122

    Article  MATH  Google Scholar 

  18. Ledger PD (2001) An hp-adaptive finite element procedure for electromagnetic wave scattering problems. PhD Thesis, University of Wales Swansea

  19. Maday Y, Patera AT (1989) Spectral element methods for the incompressible Navier–Stokes equations. In: Noor AK (eds) State of the art survey in computational mechanics. ASME, New York, pp 71–143

    Google Scholar 

  20. Mercerat ED, Vilotte JP, Sanchez–Sesma FJ (2006) Triangular spectral element simulation of two–dimensional elastic wave propagation using unstructured triangular grids. Geophys J Int 166: 679–698

    Article  Google Scholar 

  21. Mohammadian AH, Shankar V, Hall WF (1991) Computation of electromagnetic scattering and radiation using a time–domain finite–volume discretization procedure. Comput Phys Commun 68: 175–196

    Article  Google Scholar 

  22. Morgan K, El hachemi M, Hassan O, Weatherill NP (2006) Explicit time domain methods for electromagnetics. In: Caughey DA, Hafez MM (eds) Frontiers of computational fluid dynamics. World Scientific, New Jersey, pp 161–181

    Google Scholar 

  23. Morgan K, Hassan O, Pegg NE, Weatherill NP (2000) The simulation of electromagnetic scattering in piecewise homogeneous media using unstructured grids. Comput Mech 25: 438–447

    Article  MATH  Google Scholar 

  24. Morgan K, Hassan O, Peraire J (1994) An unstructured grid algorithm for the solution of Maxwell’s equations in the tgime domain. Int J Numer Methods Fluids 19: 849–863

    Article  MATH  Google Scholar 

  25. Morgan K, Hassan O, Peraire J (1996) A time domain unstructured grid approach to the simulation of electromagnetic scattering in piecewise homogeneous media. Comput Methods Appl Mech Eng 134: 17–36

    Article  MATH  Google Scholar 

  26. Morgan K, Hassan O, Peraire J (1998) Parallel processing for the simulation of problems involving scattering of electromagnetic waves. Comput Methods Appl Mech Eng 152: 157–174

    Article  MATH  Google Scholar 

  27. Patera AT (1984) A spectral element method for fluid dynamics. Laminar flow in a channel expansion. J Comput Phys 54: 468–488

    Article  MATH  Google Scholar 

  28. Šólin P, Segeth K, Doležel I (2003) Higher–order finite element methods. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  29. Peiró J (1999) Surface grid generation. In: Thompson JF, Soni BK, Weatherill NP (eds) Handbook of grid generation. CRC Press, Boca Raton, pp 19.1–19.20

    Google Scholar 

  30. Peraire J, Vahdati M, Morgan K, Zienkiewicz OC (1987) Adaptive remeshing for compressible flow computations. J Comput Phys 72: 449–466

    Article  MATH  Google Scholar 

  31. Petitjean B, Löhner R (1992) Finite element solvers for radar cross section RCS calculations. AIAA Paper 92–0455, AIAA Washington

  32. Roe PL (1981) Approximate Riemann solvers, parameter vectors and difference schemes. J Comput Phys 43: 357–372

    Article  MATH  MathSciNet  Google Scholar 

  33. Sherwin SJ, Karniadakis GE (1995) A triangular spectral element: applications to the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 123: 189–229

    Article  MATH  MathSciNet  Google Scholar 

  34. Taylor MA (2004) Private communication

  35. Taylor MA, Wingate BA (2000) A generalized diagonal mass matrix spectral element method for non–quadrilateral elements. Appl Numer Math 33: 259–265

    Article  MATH  MathSciNet  Google Scholar 

  36. Taylor MA, Wingate BA, Vincent RE (2000) An algorithm for computing Fekete points in the triangle. SIAM J Numer Anal 38: 1707–1720

    Article  MATH  MathSciNet  Google Scholar 

  37. Tromp J, Komatitsch D, Liu Q (2008) Spectral–element and adjoint methods in seismology. Commun Comput Phys 3: 1–32

    Google Scholar 

  38. Warburton T (2004) Private communication

  39. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propag 14: 302–307

    Article  MATH  Google Scholar 

  40. Zienkiewicz OC, Morgan K (2006) Finite elements and approximation. Dover, Mineola

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Morgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, R.W., Morgan, K. & Hassan, O. A high order hybrid finite element method applied to the solution of electromagnetic wave scattering problems in the time domain. Comput Mech 44, 321–331 (2009). https://doi.org/10.1007/s00466-009-0377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-009-0377-4

Keywords

Navigation