Skip to main content
Log in

Mesh free Galerkin method based on natural neighbors and conformal mapping

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, a robust mesh free method has been presented for the analysis of two dimensional problems. An efficient natural neighbor algorithm for construction of polygonal support domains has been used in this method that takes into account the nonuniform nodal discretization in the element free Galerkin formulation. The use of natural neighbors for determining the compact support is shown to overcome some of the shortcomings of the conventional distance metric based methods. For nonuniform nodal discretization there is a need for evaluating weights that have anisotropic compact supports. The smoothness and conformance of the weight function to the support domain obtained from natural neighbor algorithm is achieved through an efficient conformal mapping procedure such as Schwarz-Christoffel mapping. Numerical examples demonstrate that the proposed mesh free method gives good estimates of the stress/strain fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamson A and Alexa M (2006). Anisotropic point pet surfaces. Comput Graph Forum 25(4): 717–724

    Article  Google Scholar 

  2. Alfaro I, Yvonnet J, Chinesta F and Cueto E (2007). A study on the performance of natural neighbour based galerkin methods. Int J Numer Methods Eng 71: 1436–1465

    Article  Google Scholar 

  3. Alhfors LV (1979) Complex analysis. McGraw-Hill, New York

  4. Amenta N and Kil Y (2004). Defining point set surfaces. ACM Trans Graph 23(3): 264–270

    Article  Google Scholar 

  5. Arzanfudia M and Hossein HT (2007). Extended parametric meshless galerkin method. Comput Methods Appl Mech Eng 196: 2229–2241

    Article  Google Scholar 

  6. Atluri SN and Zhu T (1998). A new meshless local petrov galerkin (mlpg) approach in computational mechanics. Comput Mech 22(1): 117–127

    Article  MATH  MathSciNet  Google Scholar 

  7. Banjai L (2008). Revisiting the crowding phenomenon in Schwarz-Christoffel mapping. SIAM J Sci Comput 30(2): 618–636

    Article  MathSciNet  MATH  Google Scholar 

  8. Beissel S and Belytschko T (1996). Nodal integration of the element free galerkin method. Comput Methods Appl Mech Eng 139(1): 49–74

    Article  MATH  MathSciNet  Google Scholar 

  9. Belytschko T, Lu Y and Gu L (1994). Element free galerkin method. Int J Numer Methods Eng 37(1): 229–256

    Article  MATH  MathSciNet  Google Scholar 

  10. Belytschko T, Krongauz Y, Organ D, Fleming M and Krysl P (1996). Meshless methods: an over view and recent developments. Comput Methods Appl Mech Eng 139(1): 3–47

    Article  MATH  Google Scholar 

  11. Braun J and Sambridge MS (1995). A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376(1): 655–660

    Article  Google Scholar 

  12. Cai Y and Zhu H (1995). A local seacrh algorithm for natural neighbours in natural element method. Int J Solids Struct 11: 127–135

    Google Scholar 

  13. Carey GF and Muleshkov AS (1995). Some conformal map constructs for numerical grids. Commun Appl Numer Methods 11: 127–135

    Article  MATH  MathSciNet  Google Scholar 

  14. Cueto E, Sukumar N, Calvo B, Martfnez M, Cegoino J and Doblar M (2003). Overview and recent advances in natural neighbour galerkin methods. Arch Comput Methods Eng 10(4): 307–384

    Article  MATH  Google Scholar 

  15. Driscoll TA (1996). Algorithm 756: a matlab tool box for Schwarz-Christoffel mapping. ACM Trans Math Softw 22(2): 168–186

    Article  MATH  MathSciNet  Google Scholar 

  16. Driscoll TA (2005). Algorithm 843: improvements to the Schwarz-Christoffel mapping toolbox for matlab. ACM Trans Math Softw 31(2): 239–251

    Article  MATH  MathSciNet  Google Scholar 

  17. Driscoll TA, Trefethen LN (2002) Schwarz-Christoffel mapping. Cambridge Monographs on Applied and Computational Mathematics 8(1)

  18. Driscoll TA and Vavasis SA (1998). Numerical conformal mapping using cross-ratios and delaunay triangulation. SIAM J Sci Comput 19(1): 1783–1803

    Article  MATH  MathSciNet  Google Scholar 

  19. Du Q, Faber V and Gunzburger M (1999). Centroidal voronoi testellations: applications and algorithms. SIAM Rev 41: 637–676

    Article  MATH  MathSciNet  Google Scholar 

  20. Du Q, Gunzburger M and Ju L (2002). Meshfree, probabilistic determination of point sets and support regions for meshless computing. Comput Methods Appl Mech Eng 191: 1349–1366

    Article  MATH  Google Scholar 

  21. Farin R (1990). Surfaces over drichlet testellations. Comput Aided Geometirc Des 7: 281–292

    Article  MATH  MathSciNet  Google Scholar 

  22. Gonzalez D, Cueto E, Doblare M (2007) Higher order natural element methods: towards an isogeometric meshless method. Int J Numer Methods Eng. Published online. doi:10.1002/nme.2237

  23. Howell LH (1990) Computation of conformal maps by modified schwarz-christoffel transformations. Ph.D. Thesis, Department of Mathematics, MIT, Cambridge

  24. Krysl P and Belytschko T (1996). Analysis of thin plates by element free galerkin method. Comput Mech 17(1): 26–35

    Article  MathSciNet  Google Scholar 

  25. Kucherov L, Tadmor E and Miller R (2007). Umbrella spherical integration: a stable meshless methods for nonlinear solids. Int J Numer Methods Eng 69(1): 2807–2847

    Article  MathSciNet  Google Scholar 

  26. Lancaster P and Salkauskas K (1981). Surfaces generated by moving least square methods. Math Comput 37(1): 141–158

    Article  MATH  MathSciNet  Google Scholar 

  27. Lange C and Polthier K (2005). Anisotropic smoothing of point sets. Comput Aided Geometric Des 22(7): 680–692

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu GR and Tu ZH (2002). An adaptive procedure based on background cells for meshless methods. Comput Methods Appl Mech Eng 191(1): 1923–1943

    Article  MATH  Google Scholar 

  29. Löhner R, Sacco C, Oñate E, Idelsohn S (2002) A finite point method for compressible flow. Int J Numer Methods Eng 53(1):1765–1779

    Google Scholar 

  30. Melenk JM and Babuska I (1996). The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1): 280–314

    Article  MathSciNet  Google Scholar 

  31. Most T (2007). A natural neighbour based moving least square approach for the element free galerkin method. Int J Numer Methods Eng 71: 224–252

    Article  MathSciNet  Google Scholar 

  32. Nehari Z (1952). Conformal mapping. McGraw-Hill, Dover

    MATH  Google Scholar 

  33. Nie YF, Atluri SN and Zuo CW (2006). The optimal radius of the support of radial weights used in moving least squares approximation. CMES—Comput Model Eng Sci 12(2): 137–147

    Google Scholar 

  34. Pauly M (2003). Shape modelling with point sampled geometry. ACM Trans Graph 22(3): 641–650

    Article  Google Scholar 

  35. Randles PW and Yagwa G (2000). Normalized smoothed particle hydrodynamics with stress points. Int J Numer Methods Eng 48(1): 1445–1462

    Article  MATH  Google Scholar 

  36. Rao BN and Rahman S (2000). An efficient meshless method for fracture analysis of cracks. Comput Mech 26: 398–408

    Article  MATH  Google Scholar 

  37. Sambridge MS, Braun J and McQueen H (1995). Geophysical prametrization and interpolation of irregular data using natural neighbours. Geophys J Int 122(1): 837–857

    Article  Google Scholar 

  38. Schembri P, Crane DL and Reddy JN (2004). A three dimensional computational procedure for reproducing meshless methods and the finite element method. Int J Numer Methods Eng 61(6): 896–927

    Article  MATH  Google Scholar 

  39. Shirazaki M and Yagwa G (1999). Large-scale parallel flow analysis based on free mesh method: a virtually mesh less method. Comput Methods Appl Mech Eng 174(1): 419–431

    Article  MATH  Google Scholar 

  40. Sibson R (1980). A vector identity for the drichlet tessellation. Math Proc Camb Philos Soc 87: 151–155

    Article  MATH  MathSciNet  Google Scholar 

  41. Sibson R (1981) A brief description of natutral neighbour interpolation. In: Barnett V (ed) Interpreting multivariate data, vol 87, pp 21–36

  42. Sukumar N (1998) Natural element method in solid mechanics. Ph.D. Thesis

  43. Sukumar N and Moran B (1999). c 1 natural neighbour interpolant for partial differential equations. Numer Methods Partial Differ Equ 15(4): 417–447

    Article  MATH  MathSciNet  Google Scholar 

  44. Sukumar N and Wright RW (2007). Overview and construction of meshfree basis functions: from moving least squares to entropy approximants. Int J Numer Methods Eng 70(2): 181–205

    Article  MathSciNet  Google Scholar 

  45. Sukumar N, Moran B and Belytschko T (1998). The natural element method in solid mechanics. Int J Numer Methods Eng 43(1): 839–887

    Article  MATH  MathSciNet  Google Scholar 

  46. Sukumar N, Moran B, Belikov V and Semenov Y (2001). Natural neighbour galerkin methods. Int J Numer Methods Eng 50(1): 1–27

    Article  MATH  MathSciNet  Google Scholar 

  47. Tiwary A (2007). Numerical conformal mapping method based vorornoi cell finite element model for analyzing irregular inhomogenities. Finite Elements Anal Des 43(2): 504–520

    Article  MathSciNet  Google Scholar 

  48. Trefethen LN (1980). Numerical conformal mapping. SIAM J Sci Stat Comput 1(1): 82–102

    Article  MATH  MathSciNet  Google Scholar 

  49. Zuohui P (2000). Treatment of point loads in element free galerkin method. Commun Numer Methods Eng 16(2): 335–341

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, G.R., Rajagopal, A. & Sivakumar, S.M. Mesh free Galerkin method based on natural neighbors and conformal mapping. Comput Mech 42, 885–905 (2008). https://doi.org/10.1007/s00466-008-0292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0292-0

Keywords

Navigation