Skip to main content
Log in

The Adaptive Delaunay Tessellation: a neighborhood covering meshing technique

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we propose an unstructured hybrid tessellation of a scattered point set that minimally covers the proximal space around each point. The mesh is automatically obtained in a bounded period of time by transforming an initial Delaunay tessellation. Novel types of polygonal interpolants are used for interpolation applications and the geometric qualities of the elements make them also useful for discretization schemes. The approach proves to be superior to classical Delaunay one in a finite element context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aurenhammer F, Klein R (2000) Voronoi diagrams. Handb Comput Geom 5: 201–290

    Article  MathSciNet  Google Scholar 

  2. Belikov V, Ivanov V, Kontorovich V, Korytnik S, Semenov A (1997) The Non-Sibsonian interpolation: a new method of interpolation of the values of a function on an arbitrary set of points. Comput Math Math Phys 37(1): 9–15

    MathSciNet  Google Scholar 

  3. Calvo N, Idelsohn SR, Onate E (2003) The extended Delaunay tessellation. Eng Comput 20(5/6): 583–600

    Article  MATH  Google Scholar 

  4. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for galerkin mesh-free methods. Int J Numer Methods Eng 50: 435–466

    Article  MATH  Google Scholar 

  5. Delaunay B (1934) Sur la sphére vide. A la memoire de Georges Voronoi. Izv Akad Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk 7: 793–800

    Google Scholar 

  6. Descartes R (1644) La disposition de la matiere dans le systeme solaire et ses environs

  7. Dirichlet GL (1850) Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Journal für die Reine und Angewandte Mathematik 40: 209–227

    MATH  Google Scholar 

  8. Dyken C, Floater MS (2006) Preferred directions for resolving the non-uniqueness of delaunay triangulations. Comput Geom Theory Appl 43: 96–101

    MathSciNet  Google Scholar 

  9. Floater M (2003) Mean value coordinates. Comput Aided Geom Des 20: 19–27

    Article  MATH  MathSciNet  Google Scholar 

  10. Franke R, Nielson G (1980) Smooth interpolation of large sets of scattered data. J Numer Methods Eng 15: 1691–1704

    Article  MATH  MathSciNet  Google Scholar 

  11. Lawson CL (1977) Software for c 1 surface interpolation. Mathematical Software III pp 161–194

  12. Sambridge M, Braun J, McQueen H (1995) Geophysical parameterization and interpolation of irregular data using natural neighbors. Geophys J Int 122: 837–857

    Article  Google Scholar 

  13. Shewchuk JR (1999) Lecture notes on Delaunay mesh generation. Department of Electrical Engineering and Computer Science, University of California at Berkeley

  14. Shewchuk JR (2002) What is a good linear element? Interpolation, conditioning, and quality measures. Proceedings, 11th International Meshing Roundtable, pp 115–126

  15. Sibson R (1978) A vector identity for the dirichlet tessellation. Comput J 21: 243–245

    Article  MathSciNet  Google Scholar 

  16. Sibson R (1981) A brief description of natural neighbor interpolation. In: Barnett V (eds) Interpreting multivariate data. Wiley, NY, pp 21–36

    Google Scholar 

  17. Sukumar N (1998) The natural element method in solid mechanics, Ph.D. Thesis, Theoretical and applied mechanics, Northwestern University

  18. Sukumar N, Malsch E (2006) Recent advances in the construction of polygonal finite element interpolants. Arch Comput Methods Eng 13: 129–163

    Article  MATH  MathSciNet  Google Scholar 

  19. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61: 2045–2066

    Article  MATH  MathSciNet  Google Scholar 

  20. Voronoi G (1908) Nouvelles applications des paramétres continus á la théorie des formes quadratiques. Journal für die Reine und Angewandte Mathematik 133: 97–178

    Article  MATH  Google Scholar 

  21. Warren J, Schaefer S, Hirani A, Desbrun M (2003) Barycentric coordinates for convex sets. Tech. rep. Rice University, Houston

  22. Watson DF (1981) Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput J 24(2): 167–172

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Constantiniu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantiniu, A., Steinmann, P., Bobach, T. et al. The Adaptive Delaunay Tessellation: a neighborhood covering meshing technique. Comput Mech 42, 655–669 (2008). https://doi.org/10.1007/s00466-008-0265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0265-3

Keywords

Navigation