Skip to main content
Log in

RVE computations with error control and adaptivity: the power of duality

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The goal of computational homogenization is to obtain the macro-scale response, normally in terms of macro-scale stress for given macro-scale deformation, via RVE-computations. In this paper we investigate, in a systematic manner, the effects of Dirichlet and Neumann boundary conditions on the RVE. Adaptive computations are carried out with respect to, in particular, control of the error in the macro-scale stress tensor. This requires the corresponding dual solutions. As a new result, it is shown how the same dual solutions can be conveniently used in computing the algorithmic tangent stiffness tensor, thereby demonstrating the “power of duality”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubry S, Fago M, Ortiz M (2003) A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials. Comput Methods Appl Mech Eng 192:2823–2843

    Article  MATH  MathSciNet  Google Scholar 

  2. Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors. Multiscale Model Simul 1:221–238

    Article  MATH  MathSciNet  Google Scholar 

  3. Becker R, Rannacher R (1996) A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J Numer Math 4:237–264

    MATH  MathSciNet  Google Scholar 

  4. Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. Acta Numer 105–158

  5. Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260

    Article  MATH  Google Scholar 

  6. Larsson F, Runesson K (2004) Modeling and discretization errors in hyperelasto-(visco-)plasticity with a view to hierarchical modeling. Comput Methods Appl Mech Eng 193:5283–5300

    Article  MATH  MathSciNet  Google Scholar 

  7. Larsson F, Runesson K (2004) Error controlled meso–macro-scale material modeling and computation. In: Proccedings of 4th European congress on computational methods in applied sciences and engineering

  8. Larsson F, Runesson K (2004) Meso–macro-scale constitutive modeling with error control. In: Proceedings CDROM of the sixth world congress on computational mechanics in conjunction with the second asian-pacific congress on computational mechanics

  9. Larsson F, Hansbo P, Runesson K (2002) Strategies for computing goal-oriented a posteriori error measures in nonlinear elasticity. Int J. Numeri Methods Eng 55:879–894

    Article  MATH  MathSciNet  Google Scholar 

  10. Löhnert S, Wriggers P, (2003) Homogenisation of microheterogeneous materials considering interfacial delamination at finite strains. Technische Mechanik 23:167–177

    Google Scholar 

  11. Miehe C, Koch A, (2002) Computational micro-to-macro transitions of discretized microstructures undergoing small strains. Arch Appl Mech 72:300–317

    Article  MATH  Google Scholar 

  12. Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418

    Article  MATH  Google Scholar 

  13. Oden JT, Vemaganti KS (2000) Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. J Comput Phys 164:22–47

    Article  MATH  MathSciNet  Google Scholar 

  14. Oden JT (2002) A posteriori estimation of modeling and approximation error in computational science and engineering: new tools for verification and validation of computer simulations. In: Proceedings of fifth world congress on computational mechanics

  15. Oden JT, Prudhomme S, Hammerand DC, Kuczma MS (2001) Modeling error and adaptiveity in nonlinear continuum mechanics. Comput Methods App Mech Eng 190:6663–6684

    Article  MATH  MathSciNet  Google Scholar 

  16. Stein E, Ohnimus S (1997) Coupled model- and solution-adaptivity in the finite-element method. Comput Methods Appl Mech Eng 150:327–350

    Article  MATH  MathSciNet  Google Scholar 

  17. Stein E, Ohnimus S (1999) Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems. Comput Methods App Mech Eng 176:363–385

    Article  MATH  MathSciNet  Google Scholar 

  18. Stein E, Ohnimus S, Rüter M (2001) Hierarchical model- and discretization-error estimation of elasto-plastic structures. In: Aref H, Philips JW (eds) Mechanics for a new millenium. Kluwer Dordrecht

  19. Zohdi TI, Wriggers P (2005) Introduction to computational micromechanics. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredrik Larsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsson, F., Runesson, K. RVE computations with error control and adaptivity: the power of duality. Comput Mech 39, 647–661 (2007). https://doi.org/10.1007/s00466-006-0108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0108-z

Keywords

Navigation