Skip to main content
Log in

Collapse of a Liquid Column: Numerical Simulation and Experimental Validation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MATH  MathSciNet  Google Scholar 

  2. Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:239–349

    Article  MathSciNet  Google Scholar 

  3. Liu WK (1981) Finite element procedures for fluid-structure interactions and application to liquid storage tanks. Nucl Eng Des 65:221–238

    Article  Google Scholar 

  4. Huerta A, Liu W (1988) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69:277–324

    Article  MATH  Google Scholar 

  5. Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    Article  MATH  MathSciNet  Google Scholar 

  6. Tezduyar TE, Behr M, Liu J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339–351

    Article  MATH  Google Scholar 

  7. Tezduyar TE, Behr M, Mittal S, Liu J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure: II Computation of free-surfaces flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371

    Article  MATH  Google Scholar 

  8. Braess H, Wriggers P (2000) Arbitrary Lagrangian–Eulerian finite element analysis of free surface flow. Comput Methods Appl Mech Eng 190:95–109

    Article  MATH  Google Scholar 

  9. Feng YT, Perić D (2003) A spatially adaptive linear space-time finite element solution procedure for incompressible flows with moving domains. Int J Numer Methods Fluids 43:1099–1106

    Article  MATH  Google Scholar 

  10. Rabier S, Medale M (2003) Computation of free surface flows with a projection FEM in a moving mesh framework. Comput Methods Appl Mech Eng 192:4703–4721

    Article  MATH  MathSciNet  Google Scholar 

  11. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434

    Google Scholar 

  12. Bonet J, Kulasegaram S, Rodriguez-Paz MX, Profit M (2004) Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. Comput Methods Appl Mech Eng 193:928–948

    Article  Google Scholar 

  13. Kulasegaram S, Bonet J, Lewis RW, Profit M (2004) A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications. Comput Mech 33:316–325

    Article  MATH  Google Scholar 

  14. Xie H, Koshizuka S, Oka Y (2004) Modelling of a single drop impact onto liquid film using particle method. Int J Numer Methods Fluids 45:1009–1023

    Article  MATH  Google Scholar 

  15. Idelsohn S, Storti M, Oñate E (2003) A Lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput Struct 81:655–671

    Article  Google Scholar 

  16. Tezduyar T, Aliabadi S, Behr M (1998) Enhanced-discretization interface-capturing technique (EDICT) for computation of unsteady flows with interfaces. Comput Methods Appl Mech Eng 155:235–248

    Article  MATH  Google Scholar 

  17. Osher S, Fedkiw P (2001) Level set methods: and overview and some recent results. J Comput Phys 169:463–502

    Article  MATH  MathSciNet  Google Scholar 

  18. Sethian JA (2001) Evolution, implementation, and application of level set and fast marching methods for advancing fronts. J Comput Phys 169:503–555

    Article  MATH  MathSciNet  Google Scholar 

  19. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130

    MATH  Google Scholar 

  20. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim MS, Lee WI (2003) A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: New free surface-tracking algorithm and its verification. Int J Numer Methods Fluids 42:765–790

    Article  MATH  Google Scholar 

  22. Minev P, Chen T, Nandakumar K (2003) A finite element technique for multifluid incompressible flow using Eulerian grids. J Comput Phys 187:255–273

    Article  MATH  MathSciNet  Google Scholar 

  23. Sochnikov V, Efrima S (2003) Level set calculations of the evolution of boundaries on a dynamically adaptive grid. Int J Numer Methods Eng 56:1913–1929

    Article  MATH  MathSciNet  Google Scholar 

  24. Yue W, Lin CL, Patel VC (2003) Numerical simulation of unsteady multidimensional free surface motons by level set method. Int J Numer Methods Fluids 42:853–884

    Article  MATH  Google Scholar 

  25. Tezduyar TE, Sathe S (2004) Enhanced-discretization space-time technique (EDSTT). Comput Methods Appl Mech Eng 193:1385–1401

    Article  MATH  MathSciNet  Google Scholar 

  26. Kohno H, Tanahashi T (2004) Numerical analysis of moving interfaces using a level set method coupled with adaptive mesh refinement. Int J Numer Methods Fluids 45:921–944

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang JP, Borthwick AGL, Taylor RE (2004) Finite-volume-type VOF method on dynamically adaptive quadtree grids. Int J Numer Methods Fluids 45:485–508

    Article  MATH  Google Scholar 

  28. Greaves D (2004) Simulation of interface and free surface flows in a viscous fluid using adapting quadtree grids. Int J Numer Methods Fluids 44:1093–1117

    Article  MATH  Google Scholar 

  29. Cruchaga MA, Celentano DJ, Tezduyar TE (2004) Modeling of moving interface problems with the ETILT. In: Computational mechanics proceedings of the WCCM VI in conjunction with APCOM’04. Tsinghua University Press and Spring-Verlag, Beijing, China

  30. Tezduyar TE (2004). Finite elements methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, De Borts R, Hughes TJR (eds). Encyclopedia of computational mechanics, Fluids, vol 3, chapt 17. Wiley, New York

    Google Scholar 

  31. Tezduyar TE (2004). Moving boundaries and interfaces. In: Franca LP, Tezduyar TE, Masud A (eds). Finite element methods: 1970’s and beyond. CIMNE, Barcelona, pp 205–220

    Google Scholar 

  32. Cruchaga MA, Celentano DJ, Tezduyar TE (2005) Moving-interface computations with the edge-tracked interface locator technique (ETILT). Int J Numer Methods Fluids 47:451–469

    Article  MATH  Google Scholar 

  33. Tezduyar TE (2006) Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput Methods Appl Mech Eng (published online)

  34. Cruchaga MA, Oñate E (1999) A generalized streamline finite element approach for the analysis of incompressible flow problems including moving surfaces. Comput Methods Appl Mech Eng 173:241–255

    Article  MATH  Google Scholar 

  35. Martin J, Moyce W (1952) An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philos Trans R Soc Lond 244:312–324

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela A. Cruchaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruchaga, M.A., Celentano, D.J. & Tezduyar, T.E. Collapse of a Liquid Column: Numerical Simulation and Experimental Validation. Comput Mech 39, 453–476 (2007). https://doi.org/10.1007/s00466-006-0043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-006-0043-z

Keywords

Navigation