Skip to main content

Advertisement

Log in

Robotic pelvic dissection as surgical treatment of complicated diverticulitis in elective settings: a comparative study with fully laparoscopic procedure

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Recently, minimally invasive treatment of complicated sigmoid diverticulitis is becoming a valid alternative to standard procedures. Robotic approach may be useful to allow more precise dissection in arduous pelvic dissection as in complicated diverticulitis. The aim of this study is to investigate effectiveness, potential benefits and short-term outcomes of robotic-assisted laparoscopic surgical resection, compared with fully laparoscopic resection in complicated diverticulitis.

Methods

Between January 2009 and December 2017, 156 consecutive patients with history of complicated diverticular disease were referred to our Department of General, Mininvasive and Robotic Surgery. All patients underwent elective colonic resections performed by the same colorectal surgeon and followed a perioperative ERAS program. Demographic and clinical features, surgical data, postoperative data, 30-day morbidity and mortality, VAS for surgeon’s compliance were evaluated.

Results

One hundred and fifty-six consecutive patients underwent elective colonic resection: 92 fully laparoscopic (FL) colorectal resections and 64 procedures with robotic hybrid approach (RHA). Conversion rate was none in the RHA group versus 6.5% in the FL group, because of poor vision due to bowel distension, inflammatory pseudotumor and peritoneal adhesions. No 30-day mortality was observed. Mean operative time was 167.5 ± 54.4 min (80–420) in the FL group and 172.5 ± 55.64 min (110–325) in the RHA group (p 0.079), mean intraoperative blood loss was 144.6 ± 40.6 ml (40–200) with the FL technique and 138.4 ± 28.3 ml (20–185) with the RHA (p 0.295). Mean hospital stay for FL was 5 ± 4.1 days (range 3–45) and 5 ± 2.7 days (range 3–20) for RHA (p 0.974). Overall postoperative morbidity rate was 21.6% in the FL group and 12.3% in the RHA (p 0.067). Major postoperative morbidity (Clavien–Dindo 3 and 4) represented 13% and 4.6%, respectively (p 0.091). VAS for surgeon’s compliance revealed a better performance in the robotic arm (p 0.059).

Conclusions

This preliminary study highlights the potential benefits of robotic-assisted laparoscopy in colorectal resections for complicated diverticular disease in terms of surgical efficacy, postoperative morbidity and better surgeon’s compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cuomo R, Barbara G, Pace F et al (2014) Italian consensus conference for colonic diverticulosis and diverticular disease. Unit Eur Gastroenterol J 2:413–442

    Article  Google Scholar 

  2. Bordeianou L, Rattner D (2010) Is laparoscopic sigmoid colectomy for diverticulitis the new gold standard? Gastroenterology 138(7):2213–2216

    Article  PubMed  Google Scholar 

  3. Vargas HD, Ramirez RT, Hoffman GC, Hubbard GW, Gould RJ, Wohlgemuth SD et al (2000) Defining the role of laparoscopicassisted sigmoid colectomy for diverticulitis. Dis Colon Rectum 43(12):1726–1731

    Article  CAS  PubMed  Google Scholar 

  4. Ragupathi M, Ramos-Valadez DI, Patel CB, Haas EM (2011) Robotic-assisted laparoscopic surgery for recurrent diverticulitis: experience in consecutive cases and a review of the literature. Surg Endosc 25:199–206

    Article  PubMed  Google Scholar 

  5. Elliott PA, McLemore EC, Abbass MA, Abbass MA (2015) Robotic versus laparoscopic resection for sigmoid diverticulitis with fistula. J Robotic Surg. https://doi.org/10.1007/s11701-015-0503-6

    Article  Google Scholar 

  6. Maciel VJ, Lujan HJ, Plasencia G, Zeichen M, Mata W, Jorge I, Lee D, Viamonte III M, Hartmann RF (2014) Diverticular disease complicated with colovesical fistula: laparoscopic versus robotic management. Int Surg 99:203–210

    Article  PubMed  PubMed Central  Google Scholar 

  7. Owens WD, Felts JA, Spitznagel EL Jr (1978) ASA physical status classifications: a study of consistency of ratings. Anesthesiology 49:239–243

    Article  CAS  PubMed  Google Scholar 

  8. Clavien PA1, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, Slankamenac K, Bassi C, Graf R, Vonlanthen R, Padbury R, Makuuchi M (2009) The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg 250(2):187–196

    Article  PubMed  Google Scholar 

  9. Caprini JA (2010) Risk assessment as a guide to thrombosis prophylaxis. Curr Opin Pulm Med 16(5):448–452

    Article  PubMed  Google Scholar 

  10. Klarenbeek BR, Bergamaschi, R, Veenhof AA, van der Peet DL. van den Broek WT, de Lange ES, Bemelman WA, Heres P, Lacy AM, Cuesta MA (2011) Laparoscopic versus open sigmoid resection for diverticular disease: follow-up assessment of the randomized control Sigma trial. Surg Endosc 25:1121–1126

    Article  PubMed  Google Scholar 

  11. Klarenbeek BR, Veenhof AA, Bergamaschi R, van der Peet DL, van den Broek WT, de Lange ES, Bemelman WA, Heres P, Lacy AM, Engel AF, Cuesta MA (2009) Laparoscopic sigmoid resection for diverticulitis decreases major morbidity rates: a randomized control trial: short-term results of the Sigma trial. Ann Surg 249:39–44

    Article  PubMed  Google Scholar 

  12. Palaniappa NC, Telem DA, Ranasinghe NE, Divino CM (2012) Incidence of iatrogenic ureteral injury after laparoscopic colectomy. Arch Surg 147:267–271

    Article  PubMed  Google Scholar 

  13. Halabi WJ, Jafari MD, Nguyen VQ et al (2014) Ureteral injuries in colorectal surgery: an analysis of trends, outcomes, and risk factors over a 10-year period in the United States. Dis Colon Rectum 57:179 – 186

    Article  PubMed  Google Scholar 

  14. Zafar SN, Ahaghotu CA, Libuit L, Ortega G et al (2014) Ureteral injury after laparoscopic versus open colectomy. JSLS 18(3):e2014.00158

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haas JM, Singh M, Vakil N (2016) Mortality and complications following surgery for diverticulitis: systematic review and meta-analysis. United Eur Gastroenterol J 4(5):706–713

    Article  Google Scholar 

  16. Cassini D, Cerullo G, Miccini M, Manoochehri F, Ercoli A, Baldazzi G (2014) Robotic hybrid technique in rectal surgery for deep pelvic endometriosis. Surg Innov 21(1):52–58

    Article  PubMed  Google Scholar 

  17. Kim HJ, Choi GS, Park JS, Park SY, Yang CS, Lee HJ (2018) The impact of robotic surgery on quality of life, urinary and sexual function following total mesorectal excision for rectal cancer: a propensity score-matched analysis with laparoscopic surgery. Colorectal Dis 20(5):O103–O113

    Article  CAS  PubMed  Google Scholar 

  18. Dalager T (2017) Musculoskeletal pain among surgeons performing minimally invasive surgery: a systematic review. Surg Endosc 31:516–526

    Article  PubMed  Google Scholar 

  19. D’Annibale A, Morpurgo E, Fiscon V, Trevisan P, Sovernigo G, Orsini C et al (2004) Robotic and laparoscopic surgery for colorectal diseases. Dis Colon Rectum 47(12):2162–2168

    Article  PubMed  Google Scholar 

  20. D’Annibale A, Orsini C, Morpurgo E, Sovernigo G (2006) Robotic surgery: considerations after 250 procedures. Chir Ital 58(1):5–14

    PubMed  Google Scholar 

  21. Maeso S, Reza M, Mayol JA, Blasco JA, Guerra M, Andradas E et al (2010) Efficacy of the Da Vinci Surgical system in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis. Ann Surg 252(2):254–262

    Article  PubMed  Google Scholar 

  22. Antoniou SA, Antoniou GA, Koch OO, Pointner R, Granderath FA (2012) Robot-assisted laparoscopic surgery of the colon and rectum. Surg Endosc 26(1):1–11. https://doi.org/10.1007/s00464-011-1867-y

    Article  PubMed  Google Scholar 

  23. Lee GI (2017) Surgeons’ physical discomfort and symptoms during robotic surgery: a comprehensive ergonomic survey study. Surg Endosc 31:1697–1706

    Article  CAS  PubMed  Google Scholar 

  24. Moore LJ, Wilson MR, Waine E, McGrath JS, Masters RS, Vine SJ (2015) Robotically assisted laparoscopy benefits surgical performance under stress. J Robot Surg 9(4):277–284. https://doi.org/10.1007/s11701-015-0527-y.

    Article  PubMed  Google Scholar 

  25. Stefanidis D, Wang F, Korndorffer JR Jr, Dunne JB, Scott DJ (2010) Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload. 24(2):377–382. https://doi.org/10.1007/s00464-009-0578-0. Epub 2009 Jun 18

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diletta Cassini.

Ethics declarations

Disclosures

Diletta Cassini, Norma Depalma, Michele Grieco, Roberto Cirocchi, Farshad Manoochehri and Gianandrea Baldazzi have no conflicts of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cassini, D., Depalma, N., Grieco, M. et al. Robotic pelvic dissection as surgical treatment of complicated diverticulitis in elective settings: a comparative study with fully laparoscopic procedure. Surg Endosc 33, 2583–2590 (2019). https://doi.org/10.1007/s00464-018-6553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-018-6553-x

Keywords

Navigation