Skip to main content

Advertisement

Log in

Biodegradable esophageal stent placement does not prevent high-grade stricture formation after circumferential mucosal resection in a porcine model

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Advanced esophageal dysplasia and early cancers have been treated traditionally with esophagectomy. Endoscopic esophageal mucosectomy (EEM) offers less-invasive therapy, but high-degree stricture formation limits its applicability. We hypothesized that placement of a biodegradable stent (BD-stent) immediately after circumferential EEM would prevent stricturing.

Methods

Ten pigs (five unstented controls, five BD-stent) were utilized. Under anesthesia, a flexible endoscope with a band ligator and snare was used to incise the mucosa approximately 20 cm proximal to the lower esophageal sphincter. A 10-cm, circumferential, mucosal segment was dissected and excised by using snare electrocautery. In the stented group, an 18-×120-mm, self-expanding, woven polydioxanone stent (ELLA-CS, Hradec-Kralove) was deployed. Weekly esophagograms evaluated for percent reduction in esophageal diameter, stricture length, and proximal esophageal dilation. Animals were euthanized when the stricture exceeded 80 % and were unable to gain weight (despite high-calorie liquid diet) or at 14 weeks.

Results

The control group rapidly developed esophageal strictures; no animal survived beyond the third week of evaluation. At 2 weeks post-EEM, the BD-stent group had a significant reduction in esophageal diameter (77.7 vs. 26.6 %, p < 0.001) and degree of proximal dilation (175 vs. 131 %, p = 0.04) compared with controls. Survival in the BD-stent group was significantly longer than in the control group (9.2 vs. 2.4 weeks, p = 0.01). However, all BD-stent animals ultimately developed clinically significant strictures (range, 4–14 weeks). Comparison between the maximum reduction in esophageal diameter and stricture length (immediately before euthanasia) demonstrated no differences between the groups.

Conclusions

Circumferential EEM results in severe stricture formation and clinical deterioration within 3 weeks. BD-stent placement significantly delays the time of clinical deterioration from 2.4 to 9.2 weeks, but does not affect the maximum reduction in esophageal diameter or proximal esophageal dilatation. The timing of stricture formation in the BD-stent group correlated with the loss radial force and stent disintegration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bollschweiler E, Wolfgarten E, Gutschow C, Hölscher AH (2001) Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 92(3):549–555

    Article  PubMed  CAS  Google Scholar 

  2. Brown LM, Devesa SS (2002) Epidemiologic trends in esophageal and gastric cancer in the United States. Surg Oncol Clin N Am 11(2):23–56

    Article  Google Scholar 

  3. El-Serag HB, Mason AC, Petersen N, Key CR (2002) Epidemiological differences between adenocarcinoma of the oesophagus and adenocarcinoma of the gastric cardia in the USA. Gut 50(3):368–372

    Article  PubMed  CAS  Google Scholar 

  4. Rex DK, Cummings OW, Shaw M et al (2003) Screening for Barrett’s esophagus in colonoscopy patients with and without heartburn. Gastroenterology 125:1670–1677

    Article  PubMed  Google Scholar 

  5. Shaheen NJ, Crosby MA, Bozymski EM et al (2000) Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology 119:333–338

    Article  PubMed  CAS  Google Scholar 

  6. Hage M, Siersema PD, van Dekken H et al (2004) Oesophageal cancer incidence and mortality in patients with long-segment Barrett’s oesophagus after a mean follow-up of 12.7 years. Scand J Gastroenterol 39:1175–1179

    Article  PubMed  CAS  Google Scholar 

  7. Sikkema M, de Jonge PJ, Steyerberg EW et al (2010) Risk of esophageal adenocarcinoma and mortality in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 8:235–244

    Article  PubMed  Google Scholar 

  8. Sikkema M, Looman CW, Steyerberg EW et al (2011) Predictors for neoplastic progression in patients with Barrett’s esophagus: a prospective cohort study. Am J Gastroenterol 106(7):1231–1238

    Article  PubMed  CAS  Google Scholar 

  9. Prasad GA, Wu TT, Wigle DA et al (2009) Endoscopic and surgical treatment of mucosal (T1a) esophageal adenocarcinoma in Barrett’s esophagus. Gastroenterology 137(3):815–823

    Article  PubMed  Google Scholar 

  10. Swisher SG, Deford L, Merriman KW et al (2000) Effect of operative volume on morbidity, mortality, and hospital use after esophagectomy for cancer. J Thorac Cardiovasc Surg 119(6):1126–1132

    Article  PubMed  CAS  Google Scholar 

  11. van Lanschot JJ, Hulscher JB, Buskens CJ et al (2001) Hospital volume and hospital mortality for esophagectomy. Cancer 91(8):1574–1578

    Article  PubMed  Google Scholar 

  12. Young MM, Deschamps C, Trastek VF et al (2000) Esophageal reconstruction for benign disease: early morbidity, mortality, and functional results. Ann Thorac Surg 70(5):1651–1655

    Article  PubMed  CAS  Google Scholar 

  13. Santillan AA, Farma JM, Meredith KL et al (2008) Minimally invasive surgery for esophageal cancer. J Natl Compr Canc Netw 6(9):879–884

    PubMed  Google Scholar 

  14. Sampliner RE (2004) Endoscopic ablative therapy for Barrett’s esophagus: current status. Gastrointest Endosc 59:66–69

    Article  PubMed  Google Scholar 

  15. Sharma VK, Wang KK, Overholt BF et al (2007) Balloon-based, circumferential, endoscopic radiofrequency ablation of Barrett’s esophagus: 1-year follow-up of 100 patients. Gastrointest Endosc 65(2):185–195

    Article  PubMed  Google Scholar 

  16. Fleischer DE, Sharma VK (2008) Endoscopic ablation of Barrett’s esophagus using the halo system. Dig Dis 26(4):280–284

    Article  PubMed  Google Scholar 

  17. Van Laethem JL, Peny MO, Salmon I et al (2000) Intramucosal adenocarcinoma arising under squamous re-epithelialisation of Barrett’s oesophagus. Gut 46(4):574–577

    Article  PubMed  Google Scholar 

  18. Vieth M, Ell C, Gossner L et al (2004) Histological analysis of endoscopic resection specimens from 326 patients with Barrett’s esophagus and early neoplasia. Endoscopy 36(9):776–781

    Article  PubMed  CAS  Google Scholar 

  19. Pohl H, Sonnenberg A, Strobel S et al (2009) Endoscopic versus surgical therapy for early cancer in Barrett’s esophagus: a decision analysis. Gastrointest Endosc 70(4):623–631

    Article  PubMed  Google Scholar 

  20. Pech O, Ell C (2009) Endoscopic therapy of Barrett’s esophagus. Curr Opin Gastroenterol 25(5):405–411

    Article  PubMed  Google Scholar 

  21. Ell C, May A, Pech O et al (2007) Curative endoscopic resection of early esophageal adenocarcinomas (Barrett’s cancer). Gastrointest Endosc 65(1):3–10

    Article  PubMed  Google Scholar 

  22. Esaki M, Matsumoto T, Hirakawa K et al (2007) Risk factors for local recurrence of superficial esophageal cancer after treatment by endoscopic mucosal resection. Endoscopy 39(1):41–45

    Article  PubMed  CAS  Google Scholar 

  23. Hirota WK, Zuckerman MJ, Adler DG et al (2006) ASGE guideline: the role of endoscopy in the surveillance of premalignant conditions of the upper GI tract. Gastrointest Endosc 63:570–580

    Article  PubMed  Google Scholar 

  24. Hirasawa K, Kokawa A, Oka H et al (2010) Superficial adenocarcinoma of the esophagogastric junction: long-term results of endoscopic submucosal dissection. Gastrointest Endosc 72(5):960–966

    Article  PubMed  Google Scholar 

  25. Isomoto H, Yamaguchi N, Nakayama T et al (2011) Management of esophageal stricture after complete circular endoscopic submucosal dissection for superficial esophageal squamous cell carcinoma. BMC Gastroenterol 11:46–52

    Article  PubMed  Google Scholar 

  26. Ono S, Fujishiro M, Niimi K et al (2009) Predictors of postoperative stricture after esophageal endoscopic submucosal dissection for superficial squamous cell neoplasms. Endoscopy 41:661–665

    Article  PubMed  CAS  Google Scholar 

  27. Katada C, Muto M, Manabe T et al (2003) Esophageal stenosis after endoscopic mucosal resection of superficial esophageal lesions. Gastrointest Endosc 57(2):165–169

    Article  PubMed  Google Scholar 

  28. Kamler JP, Borsatto R, Binmoeller KF (2002) Circumferential endoscopic mucosal resection in the swine esophagus assisted by a cap attachment. Gastrointest Endosc 55(7):923–928

    Article  PubMed  Google Scholar 

  29. Ohki T, Yamato M, Murakami D et al (2006) Treatment of oesophageal ulcerations using endoscopic transplantation of tissue engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut 55(12):1704–1710

    Article  PubMed  CAS  Google Scholar 

  30. Rajan E, Gostout C, Feitoza A et al (2005) Widespread endoscopic mucosal resection of the esophagus with strategies for stricture prevention: a preclinical study. Endoscopy 37(11):1111–1115

    Article  PubMed  CAS  Google Scholar 

  31. Willingham FF, Gee DW, Sylla P et al (2009) En bloc esophageal mucosectomy for concentric circumferential mucosal resection (with video). Gastrointest Endosc 69(1):147–151

    Article  PubMed  Google Scholar 

  32. Sakurai T, Miyazaki S, Miyata G et al (2007) Autologous buccal keratinocyte implantation for the prevention of stenosis after EMR of the esophagus. Gastrointest Endosc 66(1):167–173

    Article  PubMed  Google Scholar 

  33. Nieponice A, McGrath K, Qureshi I et al (2009) An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest Endosc 69(2):289–296

    Article  PubMed  Google Scholar 

  34. AVMA Panel on Euthansia (2001) 2000 Report of the AVMA Panel on Euthansia. J Am Vet Assn 218(5):669–701

    Article  Google Scholar 

  35. Repici A, Vleggaar FP, Hassan C et al (2010) Efficacy and safety of biodegradable stents for refractory benign esophageal strictures: the BEST (Biodegradable Esophageal Stent) study. Gastrointest Endosc 72(5):927–934

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The stents used in this study were graciously provided by ELLA-CS, Hradec-Kralove, Czech Republic.

Disclosures

Jeffrey M. Marks receives an honorarium as a consultant for Covidien, Olympus, Boston Scientific, WL Gore, and Ethicon and for serving on the advisory board for Apollo Endosurgery. Jeffrey L. Ponsky serves as a consultant for US Endoscopy. None of the other authors have relationships to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Pauli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauli, E.M., Schomisch, S.J., Furlan, J.P. et al. Biodegradable esophageal stent placement does not prevent high-grade stricture formation after circumferential mucosal resection in a porcine model. Surg Endosc 26, 3500–3508 (2012). https://doi.org/10.1007/s00464-012-2373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-012-2373-6

Keywords

Navigation