Skip to main content
Log in

Power spectral analysis of heart rate variability during positive pressure pneumoperitoneum

The significance of increased cardiac sympathetic expression

  • Original Articles
  • Published:
Surgical Endoscopy And Other Interventional Techniques Aims and scope Submit manuscript

Abstract

Background

Positive pressure pneumoperitoneum (PPP) effects on the autonomic nervous system (ANS) might be of clinical importance, as imbalance in the autonomic cardiac control might lead to serious consequences.

Methods

Fifteen healthy patients undergoing elective laparoscopic cholecystectomy were analyzed for cardiac autonomic nervous activity by spectral heart rate variability, during awake state, before and after intubation, during CO2 PPP (14 mmHg), and after CO2 evacuation. The very low, low, high and very high frequency (VLF, LF, HF, VHF respectively) bands of the spectral density of the heart rate variability (HRV) and their normalized values, as well as the LF/HF ratio, were obtained from the power spectra of R-R intervals, using the fast-Fourier transformation algorithm.

Results

Using Friedman’s nonparametric test, only the difference between the power of LF during anesthesia (median 30.74) and the middle of PPP (median 195.66) was found to be significant (p<0.012). Such change was recorded in 14 patients (p=0.001, sign test).

Conclusions

Increased LF power reflects sympathetic cardiac activation. As the LF range accounts for regulation of blood pressure and baroreflex, several mechanisms may explain this activation. This in turn may predispose patients who suffer from cardiac disease to higher risk of developing ventricular arrhythmias, besides the possible adverse hemodynamic consequences of PPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akselrod S (1995) Components of heart rate variability: base studies. In: Malik M, Camm AJ (eds) Heart Rate Variability, Futura Publishing Company, Inc., Armonk, NY, pp 147–160

    Google Scholar 

  2. Aoki T, Tanii M, Takahashi D, Tateda T, Miyazawa A (1994) Cardiovascular changes and plasma catecholamine levels during laparoscopic surgery. Anesth Analg 78: S8

    Google Scholar 

  3. Baley PL, Egan TD, Stanley TH (2000) Intravenous opioid anesthesia. In: Miller RD (ed) Anesthesia. 5th ed. Churchill Livingstone, Philadelphia, pp 297–298

    Google Scholar 

  4. Bannenberg JG, Rademaker BMP, Grundeman PF, Kalkman CJ, Meiler DW (1995) Hemodynamics during laparoscopy in the supine or prone position. Surg Endosc 9: 125

    Article  PubMed  CAS  Google Scholar 

  5. Bootsma M, Swenne CA, Van Bolhuis HH, Chang PC, Cats VM, Bruschke AV (1994) Heart rate and heart rate variability as indexes of sympathovagal balance. Am J Physiol 266: H1565-H1571

    PubMed  CAS  Google Scholar 

  6. Bosnjak ZJ, Kampine JP (1983) Effects of halothane, enflurane and isoflurane in the SA node. Anesthesiology 58: 314–321

    Article  PubMed  CAS  Google Scholar 

  7. Bosnjak ZJ, Seagard JL, Wu A, Kampine JP (1982) The effects of halothane on sympathetic ganglionic transmission. Anesthesiology 57: 473–479

    Article  PubMed  CAS  Google Scholar 

  8. Diamant M, Benumof JL, Saidman LJ (1978) Hemodynamics of increased intra-abdominal pressure; interaction with hypovolemia and halothane anesthesia. Anesthesiology 48: 23–27

    Article  PubMed  CAS  Google Scholar 

  9. Ebert TJ, Kampire JP (1989) Nitrous oxide augment sympathetic outflow; direct evidence from human peroneal nerve recording. Anesth Analg 69: 444–449

    Article  PubMed  CAS  Google Scholar 

  10. Ebert TJ, Muzi M, Berens R, Goff D, Kampine JP (1992) Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology 76: 725–733

    Article  PubMed  CAS  Google Scholar 

  11. Flacke JW, Flacke WE, Bloor BC, Olewine S (1983) Effects of fentanyl, naloxone and clonidine on hemodynamics and plasma catecholamine levels in dogs. Anesth Analg 62: 305–313

    Article  PubMed  CAS  Google Scholar 

  12. Galizia G, Prizio E, Lieto E, Castellano P, Pelosio L, Imperatore V, Ferrara A, Pignatelli C (2001) Hemodynamic and pulmonary changes during open, carbondioxide pneumoperitoneum, and abdominal wall lifting cholecystectomy. A prospective, randomized study. Surg Endosc 15: 477–483

    Article  PubMed  CAS  Google Scholar 

  13. Galletly DC, Bucklay DHF, Robinson BJ, Corfiatis T (1994) Heart rate variability during propofol anesthesia. Br J Anesth 72: 219–220

    Article  CAS  Google Scholar 

  14. Galletly DC, Westenberg AM, Robinson BJ, Carfiatis T (1994) Effect of halothane, isoflurane and fentanyl on spectral components of heart rate variability. Br J Anesth 72: 177–180

    Article  CAS  Google Scholar 

  15. Gravlee GP, Ramsey FM, Roy RC, Angert KC, Rogers AT, Pauca AL (1988) Rapid administration of a narcotic and neuromuscular blocker: A hemodynamic comparison of fentanyl, sufentanyl, pancuronium and vecuronium. Anesth Analg 67: 39–47

    PubMed  CAS  Google Scholar 

  16. Hayano J, Sakakibara Y, Yamada M, Ohte N, Fuginami T, Yokoyama K, Watanabe Y, Takata K (1990) Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation 81: 1217–1224

    PubMed  CAS  Google Scholar 

  17. Hirvonen EA, Poikolainen EO, Paakkonen ME, Nuutinen LS (2000) The adverse hemodynamic effects of anesthesia, head-up tilt, and carbon dioxide pneumoperitoneum during laparoscopic cholecystectomy. Surg Endosc 14: 272–277

    Article  PubMed  CAS  Google Scholar 

  18. Ho HS, Gunther RA, Wolfe BM (1992) Intraperitoneal carbon dioxide insufflation and cardiopulmonary function. Arch Surg 127: 928–932

    PubMed  CAS  Google Scholar 

  19. Hughes R, Chapple DJ (1976) Effects of non-depolarizing neuromuscular blocking agents on autonomic mechanisms in cats. Br J Anesth 48: 59–68

    Article  CAS  Google Scholar 

  20. Kamath MV, Fallen EL (1993) Power spectral analysis of heart rate variability; a noninvasive sisnature of cardiac autonomic function. Crit Rev Biomed Eng 21: 245–311

    PubMed  CAS  Google Scholar 

  21. Kashtan J, Green JF, Parsons EQ, Holcroft JW (1981) Hemodynamic effects of increased abdominal pressure. J Surg Res 30; 249–255

    Article  PubMed  CAS  Google Scholar 

  22. Kato M, Komatsu T, Kimura T, Sugiyama F, Nakashima K, Shimada Y (1992) Spectral analysis of heart rate variability during isoflurane anesthesia. Anesthesiology 77: 669–674

    Article  PubMed  CAS  Google Scholar 

  23. Kleiger RE, Miller JP, Bigger JT, Moss AJ (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59: 256–262

    Article  PubMed  CAS  Google Scholar 

  24. Kolman BS, Verrier RL, Lown B (1975) The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: Role of sympathetic-parasympathetic interaction. Circulation 52: 578–585

    PubMed  CAS  Google Scholar 

  25. La Rovere MT, Mortara A, Pinna GD, Bernardi L (1995) Baroreflex sensitivity and heart rate variability in the assessment of the autonomic status. In: Malik M, Cann AJ (eds) Heart Rate Variability. Futura Publishing Company, New York, pp 189–202

    Google Scholar 

  26. Lenz RJ, Thomas TA, Wilkins DF (1976) Cardiovascular changes during laparoscopy. Anesthesia 31: 4–12

    Article  CAS  Google Scholar 

  27. Malliani A, Pagnai M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency domain. Circulation 84: 482–492

    PubMed  CAS  Google Scholar 

  28. McLaughlin JG, Scheeres DE, Dean RJ, Bonnel BW (1995) The adverse hemodynamic effects of laparoscopic cholecystectomy. Surg Endosc 9: 121–124

    Article  PubMed  CAS  Google Scholar 

  29. Odemuyiwa O, Malik M, Farrel T, Bashir Y, Poloniecki J, Camm J (1991) Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol 68: 434–439

    Article  PubMed  CAS  Google Scholar 

  30. Pagai M, Lombardi F, Guzzetti S, Rinoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dellorto S, Piccaluga E (1986) Power spectral analysis of heart rate and atrial pressure as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59: 178–193

    Google Scholar 

  31. Pomeranz B, Macaulay RJB, Caudill MA, Kutz I, Adam D, Gordan D, Kilborn KN, Barger AC, Shannon DC, Cohen RJ (1985) Assessment of autonomic function in humans by heart rate analysis. Am J Physiol 248: H151-H153

    PubMed  CAS  Google Scholar 

  32. Rasmussen JP, Dauchot PJ, Depalma RG, Sorensen B, Regula G, Anton AH, Gravenstein JS (1978) Cardiac function and hypercarbia. Arch Surg 113: 1196–1200

    PubMed  CAS  Google Scholar 

  33. Safran DB, Orlando R (1994) Physiolgoic effects of pneumoperitoneum. Am J Surg 167: 281–286

    Article  PubMed  CAS  Google Scholar 

  34. Safran DB, Sgambati S, Orlando R (1993) Laparoscopic surgery in high risk patients. Surg Gynecol Obstet 176: 548–554

    PubMed  CAS  Google Scholar 

  35. Sato N, Kawamato M, Yuge O, Suyama H, Sanuki M, Matsumoto C, Inoue K (2000) Effects of pneumoperitoneum on cardiac autonomic nervous activity by heart rate variability analysis during sevoflurane, isoflurane, or propofol anesthesia. Surg Endosc 14: 362–366

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz PJ, La Rovere MT, Vanoli E (1992) Autonomic nervous system and sudden cardiac death. Experimental basic and clinical observation for post-myocardial infartion risk stratification. Circulation 85 (suppl 1): I 77–91

    Google Scholar 

  37. Schwartz PJ, Snebold NG, Brown M (1976) Effects of unilateral cardiac sympathetic denervation on the ventricular fibrillation threshold. Am J Cardiol 37: 1034–1040

    Article  PubMed  CAS  Google Scholar 

  38. Shauer PR, Schwesinger WH (1995) Editorial: Hemodynamic effects of laparoscopy. Surg Endosc 9: 119–120

    Google Scholar 

  39. Skorsted P, Price ML, Price HL (1970) The effects of short-acting barbiturates on arterial pressure, preganglionic sympathetic activity and barostatic reflexes. Anesthesiology 33: 10–18

    Article  Google Scholar 

  40. Skovsted P, Sapthavichaikul S (1977) The effect of isoflurane on arterial pressure, pulse rate, autonomic nervous activity, and barostatic reflexes. Can Anesth Soc J 24: 304–314

    Article  CAS  Google Scholar 

  41. Westerband A, Van De Water JM, Amzallag M, Lebovitz PW, Nwasokwa ON, Chardavoyne R, Abou-Taleb A, Wang X, Wise L (1992) Cardiovascular changes during laparoscopic cholecystectomy. Surg Gynecol Obstet 175: 535–538

    PubMed  CAS  Google Scholar 

  42. Zuckerman R, Gold M, Jenkins P, Rauscher LA, Jones M, Heneghan J (2002) The effects of pneumoperitoneum and patient position on hemodynamics during laparoscopic cholecystectomy. Surg Endosc 15: 561–565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Online publication: 3 May 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bickel, A., Yahalom, M., Roguin, N. et al. Power spectral analysis of heart rate variability during positive pressure pneumoperitoneum. Surg Endosc 16, 1341–1344 (2002). https://doi.org/10.1007/s00464-001-9211-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-001-9211-6

Key words

Navigation