Skip to main content
Log in

A Preliminary Videofluoroscopic Investigation of Swallowing Physiology and Function in Individuals with Oculopharyngeal Muscular Dystrophy (OPMD)

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Dysphagia is one of the primary symptoms experienced by individuals with Oculopharyngeal Muscular Dystrophy (OPMD). However, we lack understanding of the discrete changes in swallowing physiology that are seen in OPMD, and the resulting relationship to impairments of swallowing safety and efficiency. This study sought to describe the pathophysiology of dysphagia in a small sample of patients with OPMD using a videofluoroscopy examination (VFSS) involving 3 × 5 mL boluses of thin liquid barium (22% w/v). The aim of this study is to extend what is known about the pathophysiology of dysphagia in OPMD, by quantifying changes in swallow timing, kinematics, safety, and efficiency, measured from VFSS. This study is a secondary analysis of baseline VFSS collected from 11 adults (4 male), aged 48–62 (mean 57) enrolled in an industry-sponsored phase 2 therapeutic drug trial. Blinded raters scored the VFSS recordings for safety [Penetration-Aspiration Scale (PAS)], efficiency [Normalized Residue Ratio Scale (NRRS)], timing [Pharyngeal Transit Time (PTT), Swallow Reaction Time (SRT), Laryngeal Vestibule Closure Reaction Time (LVCrt), Upper Esophageal Sphincter Opening Duration (UESD)], and kinematics (hyoid movement, pharyngeal constriction, UES opening width). Impairment thresholds from existing literature were defined to characterize swallowing physiology and function. Further, Fisher’s Exact tests and Pearson’s correlations were used to conduct a preliminary exploration of associations between swallowing physiology (e.g., kinematics, timing) and function (i.e., safety, efficiency). Compared to published norms, we identified significant differences in the degree of maximum pharyngeal constriction, hyoid movement distance and speed, as well as degree and timeliness of airway closure. Unsafe swallowing (PAS ≥ 3) was seen in only 3/11 patients. By contrast, clinically significant residue (i.e., NRRS scores ≥ 0.09 vallecular; ≥ 0.2 pyriform) was seen in 7/11 patients. Fisher’s Exact tests revealed associations between prolonged SRT, PTT, and unsafe swallowing. Weak associations were also identified between post-swallow residue and poor pharyngeal constriction during the swallow. Detailed analysis of swallowing physiology in this series of adults with OPMD aligns with impaired muscular function (e.g., reduced pharyngeal constriction, incomplete laryngeal vestibule closure) associated with the disease, and primary functional challenges with swallow efficiency. Further work is needed to explore a greater range of food and liquid textures, and to identify additional physiological mechanisms underlying swallowing impairment in OPMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brais B. Oculopharyngeal muscular dystrophy. Handb Clin Neurol. 2011;101:181–92. https://doi.org/10.1016/B978-0-08-045031-5.00014-1.

    Article  PubMed  Google Scholar 

  2. Abu-Baker A, Rouleau GA. Oculopharyngeal muscular dystrophy: recent advances in the understanding of the molecular pathogenic mechanisms and treatment strategies. Biochim Biophys Acta. 2007;1772(2):173–85. https://doi.org/10.1016/j.bbadis.2006.10.003.

    Article  CAS  PubMed  Google Scholar 

  3. Tomé FMS, Chateau D, Helbling-Leclerc A, Fardeau M. Morphological changes in muscle fibers in oculopharyngeal muscular dystrophy. Neuromuscul Disord. 1997;7:S63–9. https://doi.org/10.1016/s0960-8966(97)00085-0.

    Article  PubMed  Google Scholar 

  4. Young EC, Durant-Jones L. Gradual onset of dysphagia: a study of patients with oculopharyngeal muscular dystrophy. Dysphagia. 1997;12(4):196–201. https://doi.org/10.1007/pl00009536.

    Article  CAS  PubMed  Google Scholar 

  5. Bouchard JP, Brais B, Brunet D, Gould PV, Rouleau GA. Recent studies on oculopharyngeal muscular dystrophy in Québec. Neuromuscul Disord. 1997;7(Suppl 1):S22–9.

    Article  PubMed  Google Scholar 

  6. Van Der Sluijs BM, Hoefsloot LH, Padberg GW, Van Der Maarel SM, Van Engelen BG. Oculopharyngeal muscular dystrophy with limb girdle weakness as major complaint. J Neurol. 2003;250(11):1307–12. https://doi.org/10.1007/s00415-003-0201-6.

    Article  Google Scholar 

  7. Miller RM, Britton D. Dysphagia in neuromuscular diseases. San Diego: Plural Publishing; 2011.

    Google Scholar 

  8. Blumen SC, Bouchard JP, Brais B, Carasso RL, Paleacu D, Drory VE, Chantal S, Blumen N, Braverman I. Cognitive impairment and reduced life span of oculopharyngeal muscular dystrophy homozygotes. Neurology. 2009;73(8):596–601. https://doi.org/10.1212/WNL.0b013e3181b388a3.

    Article  CAS  PubMed  Google Scholar 

  9. Mizoi Y, Yamamoto T, Minami N, Ohkuma A, Nonaka I, Nishino I, Tamura N, Amano T, Araki N. Oculopharyngeal muscular dystrophy associated with dementia. Intern Med. 2011;50(20):2409–12.

    Article  PubMed  Google Scholar 

  10. van der Sluijs BM, te Riele MGE, Hammink JKN, Ramdhani-Joosten AAJ, Snijders AH, Raz V, van Engelen BGM, Voermans NC. Oculopharyngeal muscular dystrophy with frontotemporal dementia. Eur Geriatr Med. 2017;8(1):81–3.

    Article  Google Scholar 

  11. Duranceau A. Cricopharyngeal myotomy in the management of neurogenic and muscular dysphagia. Neuromuscul Disord. 1997;7(Suppl 1):S85–9.

    Article  PubMed  Google Scholar 

  12. Duranceau CA, Letendre J, Clermont RJ, Lévesque HP, Barbeau A. Oropharyngeal dysphagia in patients with oculopharyngeal muscular dystrophy. Can J Surg. 1978;21(4):326–9.

    CAS  PubMed  Google Scholar 

  13. Tabor LC, Plowman EK, Romero-Clark C, Youssof S. Oropharyngeal dysphagia profiles in individuals with oculopharyngeal muscular dystrophy. Neurogastroenterol Motility. 2017. https://doi.org/10.1111/nmo.13251.

    Article  Google Scholar 

  14. Palmer PM, Romero-Clark C, Coe T, Morrison L, Garrison K, Wiest P. Swallow deficits in a Northern New Mexico cohort of patients with OPMD. Dysphagia. 2006;21(4):321.

    Google Scholar 

  15. Palmer PM, Neel AT, Sprouls G, Morrison L. Swallow characteristics in patients with oculopharyngeal muscular dystrophy. J Speech Lang Hear Res. 2010;53(6):1567–78. https://doi.org/10.1044/1092-4388(2010/09-0068).

    Article  PubMed  Google Scholar 

  16. Castell JA, Castell DO, Duranceau CA, Topart P. Manometric characteristics of the pharynx, upper esophageal sphincter, esophagus, and lower esophageal sphincter in patients with oculopharyngeal muscular dystrophy. Dysphagia. 1995;10(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  17. Werling S, Schrank B, Eckardt AJ, Hauburger A, Deschauer M, Müller M. Oculopharyngeal muscular dystrophy as a rare cause of dysphagia. Ann Gastroenterol. 2015;28(2):291–3.

    PubMed  PubMed Central  Google Scholar 

  18. Duranceau A, Forand MD, Fauteux JP. Surgery in oculopharyngeal muscular dystrophy. Am J Surg. 1980;139(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  19. Bouchard J, Marcoux S, Gosselin F, Pineault D, Rouleau G. A simple test for the detection of the dysphagia in members of families with oculopharyngeal muscular dystrophy (OPMD). Can J Neurol Sci. 1992;19:296–7.

    Google Scholar 

  20. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11(2):93–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pearson WG Jr, Molfenter SM, Smith ZM, Steele CM. Image-based measurement of post-swallow residue: the normalized residue ratio scale. Dysphagia. 2013;28(2):167–77. https://doi.org/10.1007/s00455-012-9426-9.

    Article  PubMed  Google Scholar 

  22. Molfenter SM, Steele CM. Use of an anatomical scalar to control for sex-based size differences in measures of hyoid excursion during swallowing. J Speech Lang Hear Res. 2014;57(3):768–78. https://doi.org/10.1044/2014_JSLHR-S-13-0152.

    Article  PubMed  Google Scholar 

  23. Molfenter SM, Steele CM. Kinematic and temporal factors associated with penetration-aspiration in swallowing liquids. Dysphagia. 2014;29(2):269–76. https://doi.org/10.1007/s00455-013-9506-5.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nagy A, Molfenter SM, Peladeau-Pigeon M, Stokely S, Steele CM. The effect of bolus consistency on hyoid velocity in healthy swallowing. Dysphagia. 2015;30(4):445–51. https://doi.org/10.1007/s00455-015-9621-6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nagy A, Molfenter SM, Peladeau-Pigeon M, Stokely S, Steele CM. The effect of bolus volume on hyoid kinematics in healthy swallowing. Biomed Res Int. 2014;2014:738971. https://doi.org/10.1155/2014/738971.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Leonard R, Kendall K, McKenzie S. UES opening and cricopharyngeal bar in nondysphagic elderly and nonelderly adults. Dysphagia. 2004;19(3):182–91.

    Article  PubMed  Google Scholar 

  27. Stokely SL, Peladeau-Pigeon M, Leigh C, Molfenter SM, Steele CM. The relationship between pharyngeal constriction and post-swallow residue. Dysphagia. 2015;30(3):349–56. https://doi.org/10.1007/s00455-015-9606-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Robbins J, Hamilton JW, Lof GL, Kempster GB. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology. 1992;103(3):823.

    Article  CAS  PubMed  Google Scholar 

  29. Humbert IA, Lokhande A, Christopherson H, German R, Stone A. Adaptation of swallowing hyo-laryngeal kinematics is distinct in oral vs. pharyngeal sensory processing. J Appl Physiol. 2012;112(10):1698–705.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Young JL, Macrae P, Anderson C, Taylor-Kamara I, Humbert IA. The sequence of swallowing events during the chin-down posture. Am J Speech Lang Pathol. 2015;24(4):659–70.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Logemann JA. The evaluation and treatment of swallowing disorders. Curr Opin Otolaryngol Head Neck Surg. 1998;6(6):395–400.

    Article  Google Scholar 

  32. Guedes R, Azola A, Macrae P, Sunday K, Mejia V, Vose A, Humbert IA. Examination of swallowing maneuver training and transfer of practiced behaviors to laryngeal vestibule kinematics in functional swallowing of healthy adults. Physiol Behav. 2017;174:155–61. https://doi.org/10.1016/j.physbeh.2017.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Macrae P, Anderson C, Humbert I. Mechanisms of airway protection during chin-down swallowing. J Speech Lang Hear Res (JSLHR). 2014;57(4):1251.

    Article  Google Scholar 

  34. Molfenter SM, Steele CM. The relationship between residue and aspiration on the subsequent swallow: an application of the normalized residue ratio scale. Dysphagia. 2013;28(4):494–500. https://doi.org/10.1007/s00455-013-9459-8.

    Article  PubMed  Google Scholar 

  35. Molfenter SM, Cliffe Polacco R, Steele CM. The validity of multiple swallows per bolus as a sign of swallowing impairment. Paper presented at the European Society for Swallowing Disorders, Leiden, The Netherlands, September 2011.

  36. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–63. https://doi.org/10.1016/j.jcm.2016.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Daniels SK, Schroeder MF, DeGeorge PC, Corey DM, Rosenbek JC. Effects of verbal cue on bolus flow during swallowing. Am J Speech Lang Pathol. 2007;16(2):140–7.

    Article  PubMed  Google Scholar 

  38. Steele CM, Chak V, Dhindsa A, Dramin RD, Nagy A, Peladeau-Pigeon M, Tapson M, Torreiter S, Wolkin T, Waito AA. Timing plays a major role in the pathophysiology of aspiration. Dysphagia. 2015.

  39. Nativ-Zeltzer N, Logemann JA, Kahrilas PJ. Comparison of timing abnormalities leading to penetration versus aspiration during the oropharyngeal swallow. Laryngoscope. 2014;124(4):935–41. https://doi.org/10.1002/lary.24408.

    Article  Google Scholar 

  40. Chang MH, Chang SP, Cheung SC, Kong KW. Computerized tomography of oropharynx is useful in the diagnosis of oculopharyngeal muscular dystrophy. Muscle Nerve. 1993;16(3):325.

    CAS  PubMed  Google Scholar 

  41. Steele CM, Cichero JA. Physiological factors related to aspiration risk: a systematic review. Dysphagia. 2014;29(3):295–304. https://doi.org/10.1007/s00455-014-9516-y.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kahrilas PJ, Lin S, Rademaker AW, Logemann JA. Impaired deglutitive airway protection: a videofluoroscopic analysis of severity and mechanism. Gastroenterology. 1997;113(5):1457–64.

    Article  CAS  PubMed  Google Scholar 

  43. Yunusova Y, Green JR, Lindstrom MJ, Ball LJ, Pattee GL, Zinman L. Kinematics of disease progression in bulbar ALS. J Commun Disord. 2010;43(1):6–20. https://doi.org/10.1016/j.jcomdis.2009.07.003.

    Article  PubMed  Google Scholar 

  44. Youssof S, Schrader RM, Romero-Clark C, Roy G, Spafford M. Safety of botulinum toxin for dysphagia in oculopharyngeal muscular dystrophy. Muscle Nerve. 2014;49(4):601–3. https://doi.org/10.1002/mus.24123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duranceau AC, Beauchamp G, Jamieson GG, Barbeau A. Oropharyngeal dysphagia and oculopharyngeal muscular dystrophy. Surg Clin N Am. 1983;63(4):825–32.

    Article  CAS  PubMed  Google Scholar 

  46. de Swart BJ, van der Sluijs BM, Vos AM, Kalf JG, Knuijt S, Cruysberg JR, van Engelen BG. Ptosis aggravates dysphagia in oculopharyngeal muscular dystrophy. J Neurol Neurosurg Psychiatry. 2006;77(2):266–8. https://doi.org/10.1136/jnnp.2005.062521.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Neel AT, Palmer PM, Sprouls G, Morrison L. Tongue strength and speech intelligibility in oculopharyngeal muscular dystrophy. J Med Speech Lang Pathol. 2006;14(4):273–7.

    Google Scholar 

  48. Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005;37(5):360.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Irit Gliko-Kabir, PhD, formerly Senior Director Clinical Development with BioBlast Pharma for her role in study design and data collection, as well as Dr. Warren Wasiewski for his comments on an earlier version of this manuscript. We also gratefully acknowledge Vivian Chak, Robbyn Draimin, Ashwini Namasivayam, Sonya Torreiter, Teresa Valenzano, and Talia Wolkin for their assistance with data analysis.

Funding

Funding for this study was provided by BioBlast Pharma Ltd., Tel Aviv, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley A. Waito.

Ethics declarations

Ethical Approval

This is a secondary analysis of data from a clinical drug trial. The original study received Human Subjects approval from the institutional research ethics board, and informed consent was obtained from all individual participants.

Conflicts of interest

The authors have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waito, A.A., Steele, C.M., Peladeau-Pigeon, M. et al. A Preliminary Videofluoroscopic Investigation of Swallowing Physiology and Function in Individuals with Oculopharyngeal Muscular Dystrophy (OPMD). Dysphagia 33, 789–802 (2018). https://doi.org/10.1007/s00455-018-9904-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-018-9904-9

Keywords

Navigation