Skip to main content
Log in

Shallow Packings, Semialgebraic Set Systems, Macbeath Regions, and Polynomial Partitioning

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Given a set system \((X, \mathcal {R})\) such that every pair of sets in \(\mathcal {R}\) have large symmetric difference, the Shallow Packing Lemma gives an upper bound on \(|\mathcal {R}|\) as a function of the shallow-cell complexity of \(\mathcal {R}\). In this paper, we first present a matching lower bound. Then we give our main theorem, an application of the Shallow Packing Lemma: given a semialgebraic set system \((X, \mathcal {R})\) with shallow-cell complexity \(\varphi (\cdot , \cdot )\) and a parameter \(\epsilon > 0\), there exists a collection, called an \(\epsilon \)-Mnet, consisting of \(O\bigl ( \frac{1}{\epsilon } \,\varphi \bigl ( O\bigl (\frac{1}{\epsilon } \bigr ), O(1)\bigr ) \bigr )\) subsets of X, each of size \(\Omega ( \epsilon |X| )\), such that any \(R \in \mathcal {R}\) with \(|R| \ge \epsilon |X|\) contains at least one set in this collection. We observe that as an immediate corollary an alternate proof of the optimal \(\epsilon \)-net bound follows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The subscript will be dropped when \(\mathcal {R}\) is clear from the context.

  2. We remind the reader that in the index ijkl, i stands for the packing \(\mathcal {R}_i\), j stands for the jth set \(\mathcal {R}_{ij} \in \mathcal {R}_i\), k indicates the level in the multilevel polynomial partitioning of the set \(\mathcal {R}_{ij}\), and l stands for the lth set at the kth level.

  3. The union complexity of a family \(\mathcal {O}\) of geometric objects is \(\kappa _\mathcal {O}(\cdot )\) if the number of faces of all dimensions in the union of any m of its members is at most \(\kappa _\mathcal {O}(m)\).

  4. For a fixed parameter \(\alpha \) with \(0 < \alpha \le \pi /3\), a triangle is \(\alpha \)-fat if all three of its angles are at least \(\alpha \).

  5. For a fixed parameter \(\gamma \) with \(0 < \gamma \le 1/4\), a planar semialgebraic object o is called locally \(\gamma \)-fat if, for any disk D centered in o and that does not fully contain o in its interior, we have \(\mathrm {area}(D \sqcap o) \ge \gamma \cdot \mathrm {area}(D)\), where \(D\sqcap o\) is the connected component of \(D\cap o\) that contains the center of D.

References

  1. Aronov, B., de Berg, M., Ezra, E., Sharir, M.: Improved bounds for the union of locally fat objects in the plane. SIAM J. Comput. 43(2), 543–572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronov, B., Ezra, E., Sharir, M.: Small-size \(\epsilon \)-nets for axis-parallel rectangles and boxes. SIAM J. Comput. 39(7), 3248–3282 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arya, S., da Fonseca, G.D., Mount, D.M.: Optimal area-sensitive bounds for polytope approximation. In: Proceedings of the 28th Annual ACM Symposium on Computational Geometry (SoCG’12), pp. 363–372. ACM, New York (2012)

  4. Arya, S., da Fonseca, G.D., Mount, D.M.: On the combinatorial complexity of approximating polytopes. In: Proceedings of the 32nd International Symposium on Computational Geometry (SoCG’16). LIPIcs. Leibniz International Proceedings in Informatics, vol. 51, pp. 11:1–11:15. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2016)

  5. Bárány, I.: Random polytopes, convex bodies, and approximation. In: Weil, W. (ed.) Stochastic Geometry. Lecture Notes in Mathematics, vol. 1892, pp. 77–118. Springer, Berlin (2007)

    Google Scholar 

  6. Bárány, I., Larman, D.G.: Convex bodies, economic cap coverings, random polytopes. Mathematika 35, 274–291 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  8. Buzaglo, S., Pinchasi, R., Rote, G.: Topological hypergraphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 71–81. Springer, New York (2013)

    Chapter  Google Scholar 

  9. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA’12), pp. 1576–1585. ACM, New York (2012)

  10. Chazelle, B.: A note on Haussler’s Packing Lemma (1992). See Section 5.3 from Geometric Discrepancy: An Illustrated Guide by J. Matoušek

  11. Chekuri, C., Clarkson, K.L., Har-Peled, S.: On the set multicover problem in geometric settings. ACM Trans. Algorithms 9(1), 9:1–9:17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry, II. Discrete Comput. Geom. 4(5), 387–421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dutta, K., Ezra, E., Ghosh, A.: Two proofs for shallow packings. Discrete Comput. Geom. 56(4), 910–939 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ezra, E.: A size-sensitive discrepancy bound for set systems of bounded primal shatter dimension. SIAM J. Comput. 45(1), 84–101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ezra, E., Aronov, B., Sharir, S.: Improved bound for the union of fat triangles. In: Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA’11), pp. 1778–1785. SIAM, Philadelphia (2011)

  16. Fox, J., Pach, J., Sheffer, A., Suk, A., Zahl, J.: A semi-algebraic version of Zarankiewicz’s problem. J. Eur. Math. Soc. (JEMS) 19(6), 1785–1810 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guth, L., Katz, N.H.: On the Erdös distinct distances problem in the plane. Ann. Math. 181(1), 155–190 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haussler, D.: Sphere packing numbers for subsets of the Boolean \(n\)-cube with bounded Vapnik-Chervonenkis dimension. J. Combin. Theory Ser. A 69(2), 217–232 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kupavskii, A., Mustafa, N.H., Pach, J.: Near-optimal lower bounds for \(\epsilon \)-nets for half-spaces and low complexity set systems. In: Loebl, M., Nešetřil, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pp. 527–541. Springer, Cham (2017)

    Chapter  Google Scholar 

  20. Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the sample complexity of learning. J. Comput. System Sci. 62(3), 516–527 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics, vol. 18. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  22. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

    Book  Google Scholar 

  23. Matoušek, J., Patáková, Z.: Multilevel polynomial partitions and simplified range searching. Discrete Comput. Geom. 54(1), 22–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matoušek, J., Pach, J., Sharir, M., Sifrony, S., Welzl, E.: Fat triangles determine linearly many holes. SIAM J. Comput. 23(1), 154–169 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mustafa, N.H.: A simple proof of the shallow packing lemma. Discrete Comput. Geom. 55(3), 739–743 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mustafa, N.H., Ray, S.: \(\epsilon \)-Mnets: hitting geometric set systems with subsets. Discrete Comput. Geom. 57(3), 625–640 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mustafa, N.H., Varadarajan, K.: Epsilon-approximations and epsilon-nets. In: Goodman, J.E., O’Rourke, J., Tóth, C.D. (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (2017)

    Google Scholar 

  28. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1995)

    Google Scholar 

  29. Sauer, N.: On the density of families of sets. J. Combin. Theory Ser. A 13(1), 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shelah, S.: A combinatorial problem, stability and order for models and theories in infinitary languages. Pacific J. Math. 41, 247–261 (1972)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the journal reviewers whose feedback substantially improved the content and presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil H. Mustafa.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bruno Jartoux and Nabil H. Mustafa’s research in this paper is supported by the Grant ANR SAGA (JCJC-14-CE25-0016-01). Kunal Dutta and Arijit Ghosh are supported by the European Research Council under the Advanced Grant 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions) and the Ramanujan Fellowship (No. SB/S2/RJN-064/2015), respectively. Part of this work was done when Kunal Dutta and Arijit Ghosh were researchers in D1: Algorithms & Complexity, Max-Planck-Institute for Informatics, Germany, supported by the Indo-German Max Planck Center for Computer Science (IMPECS).

Appendix A: Generalization of the Packing Lemma

Appendix A: Generalization of the Packing Lemma

A set system \((X, \mathcal {R})\) is an l-wise k-shallow \(\delta \)-packing if \(|R| \le k\) for all \(R \in \mathcal {R}\), and further for all distinct \(A_{1}, \dots , A_{l} \in \mathcal {R}\), we have

$$\begin{aligned} \left| \left( A_{1} \cup \dots \cup A_{l} \right) {\big \backslash } \left( A_{1} \cap \dots \cap A_{l} \right) \right| \ge \delta . \end{aligned}$$

A routine generalization of the proof in [21, 25] leads to the following.

Theorem A.1

(l-Wise k-Shallow \(\delta \)-Packing Lemma) Let \((X, \mathcal {R})\) be a set system with \(|X| = n\). Let \( d, \, k, \, l, \, \delta > 0\) be four integers such that \({{\,\mathrm{\textsc {VC{-}dim}}\,}}(\mathcal {R}) \le d\), and \(\mathcal {R}\) is an l-wise k-shallow \(\delta \)-packing. If \(\mathcal {R}\) has shallow-cell complexity \(\varphi _{\mathcal {R}}\left( \cdot , \cdot \right) \), then

$$\begin{aligned} |\mathcal {R}| = O\left( \frac{l^3 d n}{\delta } \cdot \varphi _{\mathcal {R}} \left( \frac{8dl^2n}{\delta }, \frac{32 d k l^3}{\delta } \right) \right) . \end{aligned}$$

Remark A.2

The above result implies Haussler’s Packing Lemma (set \(l=2, k=n\)), the Shallow Packing Lemma 1.2 (set \(l=2\)) and the result of Fox et al. [16, Lem. 2.5] (set \(k=n\)).

The proof follows by combining the ideas in [16, 21, 25].

Lemma A.3

Let \((X, \mathcal {R})\) be a set system with \(|X| = n\). Let d, l, \(\delta \) be three integers such that \( {{\,\mathrm{\textsc {VC{-}dim}}\,}}(\mathcal {R})\le d\), and \(\mathcal {R}\) is an l-wise \(\delta \)-packing. If \(A \subseteq X\) is a uniformly selected random sample of size \(\frac{8l(l-1)dn}{\delta } -1\), then \(|\mathcal {R}| \le 2l \cdot {{\,\mathrm{\mathbb {E}}\,}}\left[ |\mathcal {R}|_{A}|\right] \).

Proof

Pick a random sample R of size \(s = \frac{8l(l-1)dn}{\delta }\) from X. Let \(G_R = (\mathcal {R}|_{R}, E_{\mathcal {R}})\) be the unit distance graph on \(\mathcal {R}|_{R}\), with an edge between any two sets whose symmetric difference is a singleton. Define the weight of a set \(S' \in \mathcal {R}|_{R}\) to be the number of sets of \(\mathcal {R}\) whose projection in \(\mathcal {R}|_R\) is \(S'\), i.e. \(w(S') = |\{ r\in \mathcal {R}\ |\ r\cap R = S' \} |\). Define the weight of an edge \(\{S'_i, S'_j\} \in E_{\mathcal {R}}\) as \(w(S'_i, S'_j) = \min \{ w(S'_i), w(S'_j)\}\). Let \(W := \sum _{e \in E_{\mathcal {R}}} w(e)\). \(\square \)

We use the following result from [21, Chap. 5, Proof 5.14].

Claim A.4

[21, Proof 5.14 from Chap. 5] \(W \le 2d \cdot |\mathcal {R}|\).

Pick R by first picking a set A of \(s-1\) elements and then selecting the remaining element a uniformly from \(X {\setminus } A\). Let \(W_1\) be the weight of the edges in \(G_R\) for which the element a is the symmetric difference. By symmetry, we have \({{\,\mathrm{\mathbb {E}}\,}}\left[ W\right] = s \cdot {{\,\mathrm{\mathbb {E}}\,}}\left[ W_1\right] \).

We use the following lower bound on the conditional expectation of \(W_1\) with respect to A.

Claim A.5

\({{\,\mathrm{\mathbb {E}}\,}}\left[ W_1 | A \right] \ge \frac{\delta / n}{2l(l-1)} \Big (|\mathcal {R}| - l \, |\mathcal {R}|_{A}| \Big )\).

The proof of this claim is given at the end of this section.

Using the fact that \({{\,\mathrm{\mathbb {E}}\,}}\left[ W\right] = s \cdot {{\,\mathrm{\mathbb {E}}\,}}\left[ W_1\right] \), one can compute an upper bound on \({{\,\mathrm{\mathbb {E}}\,}}\left[ W\right] \):

$$\begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}\left[ W\right] = s \cdot {{\,\mathrm{\mathbb {E}}\,}}\left[ W_1\right]&= s \cdot {{\,\mathrm{\mathbb {E}}\,}}\left[ {{\,\mathrm{\mathbb {E}}\,}}[W_1|A]\right] \\&\ge s {{\,\mathrm{\mathbb {E}}\,}}\left[ \frac{\delta }{2l(l-1)n} \Big (|\mathcal {R}| - l \, |\mathcal {R}|_{A}| \Big )\right] \text { (by Claim A.5)} \\&= 4d {{\,\mathrm{\mathbb {E}}\,}}\left[ |\mathcal {R}| - l \, |\mathcal {R}|_{A}|\right] \\&= 4d\bigl (|\mathcal {R}| - l {{\,\mathrm{\mathbb {E}}\,}}\left[ |\mathcal {R}|_{A}|\right] \bigr ). \end{aligned}$$

Combining Claim A.4 and the above lower bound on \({{\,\mathrm{\mathbb {E}}\,}}\left[ W\right] \), we get

$$\begin{aligned} 2d |\mathcal {R}| \ge {{\,\mathrm{\mathbb {E}}\,}}\left[ W\right] \ge 4d |\mathcal {R}| - 4dl\cdot {{\,\mathrm{\mathbb {E}}\,}}\left[ |\mathcal {R}|_{A}|\right] . \end{aligned}$$

This implies \(|\mathcal {R}| \le 2l\cdot {{\,\mathrm{\mathbb {E}}\,}}\left[ |\mathcal {R}|_{A}|\right] \). \(\square \)

Proof of Theorem A.1

Let \(A \subseteq X\) be a random sample of size \(s : = \frac{8l(l-1)dn}{\delta }-1\). Let \(\mathcal {R}_1 = \left\{ S \in \mathcal {R}\text { s.t. } |S \cap A | \ge 4l \cdot \frac{ks}{n} \right\} \).

Each element \(x \in X\) belongs to A with probability \(\frac{s}{n}\), and thus the expected number of elements in A from a fixed set of t elements is \(\frac{ts}{n}\). This implies that \({{\,\mathrm{\mathbb {E}}\,}}\left[ |S \cap A |\right] \le \frac{k s}{n}\) as \(|S| \le k\) for all \(S \in \mathcal {R}\). Markov’s inequality then bounds the probability of a set of \(\mathcal {R}\) belonging to \(\mathcal {R}_1\):

$$\begin{aligned} \Pr \left[ S \in \mathcal {R}_1\right] = \Pr \left[ |S \cap A | \ge 4l \cdot \frac{k s}{n} \right] \le \frac{1}{4l}. \end{aligned}$$

Thus

$$\begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}\left[ |\mathcal {R}|_{A }|\right] \le {{\,\mathrm{\mathbb {E}}\,}}\left[ |\mathcal {R}_1|\right] + {{\,\mathrm{\mathbb {E}}\,}}\left[ |(\mathcal {R}{\setminus } \mathcal {R}_1)|_{A }|\right]\le & {} \sum _{S \in \mathcal {R}} \Pr \left[ S \in \mathcal {R}_1 \right] + s \, \cdot \varphi \Big ( s, 4l\cdot \frac{k s}{n} \Big )\\\le & {} \frac{|\mathcal {R}|}{4l} + s \cdot \varphi \Big ( s , 4l \cdot \frac{k s}{n} \Big ), \end{aligned}$$

where we used the fact that \(|(\mathcal {R}{\setminus } \mathcal {R}_1)|_{A }| \le |A| \cdot \varphi (|A|, t)\), where \(t = \max _{S \in \mathcal {R}{\setminus } \mathcal {R}_1} |S| < 4l \frac{ks}{n}\).

Now the bound follows from Lemma A.3. \(\square \)

Finally we give the proof of Claim A.5.

Proof of Claim A.5

Consider a set \(Q \in \mathcal {R}|_{A}\), and let \(\mathcal {R}_Q\) be the sets of \(\mathcal {R}\) whose projection is Q. Once the choice of a has been made, Q will be split into two sets, those sets containing that choice of a – say there are \(b_1\) of these, and those sets not containing a, say a number \(b_2\). From the definition of weights, the expected contribution of sets of \(\mathcal {R}_Q\) to edge weight will be \({{\,\mathrm{\mathbb {E}}\,}}\left[ \min \{b_1, b_2\} \right] \ge \frac{{{\,\mathrm{\mathbb {E}}\,}}\left[ b_1 b_2 \right] }{b_1+b_2}\). The above inequality follows from the fact \(\min \{b_1 , b_2 \} \ge \frac{b_1 b_2}{b_1 + b_2}\). Observe that \(b_1 b_2\) is the number of ordered pairs \((S_1 , S_2 ) \in \mathcal {R}_Q \times \mathcal {R}_Q\) with \(a \in S_1\) and \(a \not \in S_2\). Therefore for each fixed pair of sets \((S_1 , S_2) \in \mathcal {R}_Q \times \mathcal {R}_Q\), the probability that the randomly chosen last element \(a \in S_1 {\setminus } S_2 \) is \(\frac{|S_1 {\setminus } S_2 |}{n-s-1}\). Therefore the contribution of \((S_1 , S_2)\) in \(\mathcal {R}_Q\) to \(b_1b_2\) is \(\frac{|S_1 {\setminus } S_2 |}{n-s-1}\). Noting that \(b = b_1+b_2\) is fixed independent of the choice of a, summing up over all pairs of sets in \(\mathcal {R}_Q\), we get the expected contribution of the sets in \(\mathcal {R}_Q\) to the edge weight to be at least

$$\begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}\left[ \min \{b_1, b_2\} \right]&\ge \frac{{{\,\mathrm{\mathbb {E}}\,}}\left[ b_1 b_2 \right] }{b_1 + b_2 } \\&\ge \frac{1}{b_1 + b_2 } \Bigg ( \sum _{(S_1,\, S_2 )\, \in \mathcal {R}_Q \times \mathcal {R}_Q} \Pr \left[ a \in S_1 {\setminus } S_2 \right] \Bigg )\\&\ge \frac{1}{b_1 + b_2 } \Bigg ( \sum _{ S_1 , \, S_2 \, (\ne S_1 ) \, \in \mathcal {R}_Q } \Pr \left[ a \in S_1 {\setminus } S_2 \right] + \Pr \left[ a \in S_2 {\setminus } S_1 \right] \Bigg )\\&= \frac{1}{b_1 + b_2 } \Bigg ( \sum _{ S_1 ,\, S_2 \, (\ne S_1 ) \,\in \mathcal {R}_Q } \Pr \left[ a \in S_1 \mathbin {\Delta }S_2 \right] \Bigg )\\&= \frac{1}{b_1 + b_2 } \Bigg ( \sum _{S_1 ,\, S_2 \, (\ne S_1 ) \, \in \mathcal {R}_Q } \frac{|S_1 \mathbin {\Delta }S_2 |}{n-s+1} \Bigg ). \end{aligned}$$

For all l sets \(S_1 , \dots , S_l \in \mathcal {R}_Q\), we have

$$\begin{aligned} \bigcup _{2 \le j \le l} S_1 \mathbin {\Delta }S_j = \left( S_1 \cup \dots \cup S_l \right) {\setminus } \left( S_1 \cap \dots \cap S_l \right) . \end{aligned}$$

And since \(\mathcal {R}\) is an l-wise \(\delta \)-packing we get

$$\begin{aligned} \sum _{2 \le j \le l} |S_1 \mathbin {\Delta }S_j| \ge \left| \left( S_1 \cup \dots \cup S_l \right) {\setminus } \left( S_1 \cap \dots \cap S_l \right) \right| \ge \delta . \end{aligned}$$

So for every l tuple there exists one pair \((S_1 , S_j )\) with \(| S_1 \mathbin {\Delta }S_j | \ge \frac{\delta }{l-1}\). Define the graph \(G\left[ \mathcal {R}_Q \right] : = (\mathcal {R}_Q , E_Q )\), where \(\{S_1 , S_2\} \in E\) if \(|S_1 \mathbin {\Delta }S_2 | \ge \frac{\delta }{l-1}\). As \(\mathcal {R}_Q\) is an l-wise \(\delta \)-packing we do not have independent sets of size l in \(G\left[ \mathcal {R}_Q \right] \). From Turán’s theorem, see [28], we have \(|E_Q | \ge \frac{b(b-l)}{2l}\).

Therefore

$$\begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}\left[ \min \{b_1, b_2\} \right]&\ge \frac{1}{b} \Bigg ( \sum _{S_1 , \, S_2 \, (\ne S_1 ) \, \in \mathcal {R}_Q } \frac{|S_1 \mathbin {\Delta }S_2 |}{n-s+1} \Bigg )\\&\ge \frac{1}{b} \Bigg ( \sum _{ \left\{ S_1 , \, S_2 \right\} \in E_Q } \frac{|S_1 \mathbin {\Delta }S_2 |}{n-s+1} \Bigg )\\&\ge \frac{|E_Q |}{b} \cdot \frac{(\delta / n)}{l-1} \\&\ge \frac{(\delta / n )}{2l(l-1)} \cdot \left( | \mathcal {R}_Q | - l \right) . \end{aligned}$$

The last inequality follows from the facts \(|E_Q | \ge \dfrac{b(b-l)}{2l}\) and \(|\mathcal {R}_Q | = b\).

Summing up over all sets of \(\mathcal {R}|_{A}\),

$$\begin{aligned} {{\,\mathrm{\mathbb {E}}\,}}\left[ W_1 | A \right] \ge \frac{1}{2l(l-1)} \sum _{Q \in \mathcal {R}|_{A}} \frac{\delta }{n} \Big (|\mathcal {R}_{Q}|- l \Big ) = \frac{\delta / n}{2l (l-1)} \Big ( |\mathcal {R}| - l \, |\mathcal {R}|_{A}|\Big ). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, K., Ghosh, A., Jartoux, B. et al. Shallow Packings, Semialgebraic Set Systems, Macbeath Regions, and Polynomial Partitioning. Discrete Comput Geom 61, 756–777 (2019). https://doi.org/10.1007/s00454-019-00075-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00075-0

Keywords

Navigation