Skip to main content
Log in

Computational Aspects of the Colorful Carathéodory Theorem

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \(C_1,\dots ,C_{d+1}\subset \mathbb {R}^d\) be \(d+1\) point sets, each containing the origin in its convex hull. We call these sets color classes, and we call a sequence \(p_1, \dots , p_{d+1}\) with \(p_i \in C_i\), for \(i = 1, \dots , d+1\), a colorful choice. The colorful Carathéodory theorem guarantees the existence of a colorful choice that also contains the origin in its convex hull. The computational complexity of finding such a colorful choice (ColorfulCarathéodory) is unknown. This is particularly interesting in the light of polynomial-time reductions from several related problems, such as computing centerpoints, to ColorfulCarathéodory. We define a novel notion of approximation that is compatible with the polynomial-time reductions to ColorfulCarathéodory: a sequence that contains at most k points from each color class is called a k-colorful choice. We present an algorithm that for any fixed \(\varepsilon > 0\), outputs an \(\lceil \varepsilon d\rceil \)-colorful choice containing the origin in its convex hull in polynomial time. Furthermore, we consider a related problem of ColorfulCarathéodory: in the nearest colorful polytope problem (Ncp), we are given sets \(C_1,\dots ,C_n\subset \mathbb {R}^d\) that do not necessarily contain the origin in their convex hulls. The goal is to find a colorful choice whose convex hull minimizes the distance to the origin. We show that computing a local optimum for Ncp is PLS-complete, while computing a global optimum is NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Recall that the Real-Ram is the standard model of computational geometry where memory cells store arbitrary real numbers and operations on them can be performed at unit cost. We emphasize that there is no known algorithm for solving linear programs that needs a polynomial number of steps on the Real-Ram. Thus, our algorithms avoid the use of LPs.

  2. On the Real-Ram, we need not worry about the bit-complexity of Gaussian elimination.

  3. Actually, Arocha et al. present an even stronger result (the “very colorful Kirchberger theorem” [2, Thm. 3]) using a generalization of the colorful Carathéodory theorem. Here, we consider the weaker version that can be obtained from Theorem 1.2.

  4. Recall that A and B are relations between problem instances and candidate solutions.

References

  1. Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  2. Arocha, J.L., Bárány, I., Bracho, J., Fabila, R., Montejano, L.: Very colorful theorems. Discrete Comput. Geom. 42(2), 142–154 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bárány, I.: A generalization of Carathéodory’s theorem. Discrete Math. 40(2–3), 141–152 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bárány, I., Onn, S.: Colourful linear programming and its relatives. Math. Oper. Res. 22(3), 550–567 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barman, S.: Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of Carathéodory’s theorem. In: Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15), pp. 361–369. ACM, New York (2015)

  6. Blum, M., Pratt, V., Tarjan, R.E., Floyd, R.W., Rivest, R.L.: Time bounds for selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pp. 430–436. ACM, New York (2004)

  8. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04), pp. 604–612. ACM, New York (2004)

  9. Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of points in linear time. Discrete Comput. Geom. 12(3), 291–312 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. System Sci. 37(1), 79–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kapoor, S., Vaidya, P.M.: Fast algorithms for convex quadratic programming and multicommodity flows. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC’86), pp. 147–159. ACM, New York (1986)

  12. Kirchberger, P.: Über Tchebychefsche Annäherungsmethoden. Math. Ann. 57(4), 509–540 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: The polynomial solvability of convex quadratic programming. USSR Comput. Math. Math. Phys. 20(5), 223–228 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  14. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2002)

    Book  Google Scholar 

  15. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and computational complexity. Theor. Comput. Sci. 81(2), 317–324 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meunier, F., Deza, A.: A further generalization of the colourful Carathéodory theorem. In: Bezdek, K., Deza, A., Ye, Y. (eds.) Discrete Geometry and Optimization. Fields Institute Communications, vol. 69, pp. 179–190. Springer, Berlin (2013)

    Chapter  Google Scholar 

  17. Meunier, F., Mulzer, W., Sarrabezolles, P., Stein, Y.: The rainbow at the end of the line—a PPAD formulation of the colorful Carathéodory theorem with applications. In: Proceedings of the 28th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA’17), pp. 1342–1351. SIAM, Philadelphia (2017)

  18. Meunier, F., Sarrabezolles, P.: Colorful linear programming, Nash equilibrium, and pivots (2014). arXiv:1409.3436

  19. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Monographs in Theoretical Computer Science. Springer, Berlin (2007)

    MATH  Google Scholar 

  20. Miller, G.L., Sheehy, D.R.: Approximate centerpoints with proofs. Comput. Geom. 43(8), 647–654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mulzer, W., Werner, D.: Approximating Tverberg points in linear time for any fixed dimension. Discrete Comput. Geom. 50(2), 520–535 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Papadimitriou, C.H.: The complexity of the Lin-Kernighan heuristic for the traveling salesman problem. SIAM J. Comput. 21(3), 450–465 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Preparata, F.P., Shamos, M.I.: Computational Geometry. Texts and Monographs in Computer Science. Springer, New York (1985)

    Book  MATH  Google Scholar 

  24. Rado, R.: A theorem on general measure. J. Lond. Math. Soc. 21, 291–300 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roudneff, J.P.: Partitions of points into simplices with \(k\)-dimensional intersection. I. The conic Tverberg’s theorem. Eur. J. Comb. 22(5), 733–743 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sarkaria, K.S.: Tverberg’s theorem via number fields. Israel J. Math. 79(2–3), 317–320 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Teng, S.-H.: Points, Spheres, and Separators: A Unified Geometric Approach to Graph Partitioning. Ph.D. thesis, Carnegie Mellon University (1991)

  29. Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. 41(1), 123–128 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tverberg, H.: A generalization of Radon’s theorem II. Bull. Aust. Math. Soc. 24(3), 321–325 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tverberg, H., Vrećica, S.: On generalizations of Radon’s theorem and the ham sandwich theorem. Eur. J. Comb. 14(3), 259–264 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Frédéric Meunier and Pauline Sarrabezolles for interesting discussions on the colorful Carathéodory problem and for hosting us during multiple research stays at the École Nationale des Ponts et Chaussées. Furthermore, we would like to thank the anonymous reviewers for their detailed reading of our paper and for their helpful and encouraging comments on previous versions.

Funding

WM was supported in part by DFG Grants MU 3501/1 and MU 3501/2 and ERC StG 757609. YS was supported by the Deutsche Forschungsgemeinschaft within the research training group ‘Methods for Discrete Structures’ (GRK 1408) and by GIF Grant 1161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannik Stein.

Additional information

Editor in Charge: János Pach

A preliminary version of this article appeared as W. Mulzer and Y. Stein. Computational Aspects of the Colorful Carathéodory Theorem. Proc. 31st SoCG, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulzer, W., Stein, Y. Computational Aspects of the Colorful Carathéodory Theorem. Discrete Comput Geom 60, 720–755 (2018). https://doi.org/10.1007/s00454-018-9979-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-9979-y

Keywords

Mathematics Subject Classification

Navigation