Skip to main content
Log in

Optimal Centrality Computations Within Bounded Clique-Width Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given an n-vertex m-edge graph G of clique-width at most k, and a corresponding k-expression, we present algorithms for computing some well-known centrality indices (eccentricity and closeness) that run in \({\mathcal {O}}(2^{{\mathcal {O}}(k)}(n+m)^{1+\epsilon })\) time for any \(\epsilon > 0\). Doing so, we can solve various distance problems within the same amount of time, including: the diameter, the center, the Wiener index and the median set. Our run-times match conditional lower bounds of Coudert et al. (SODA’18) under the Strong Exponential-Time Hypothesis. On our way, we get a distance-labeling scheme for n-vertex m-edge graphs of clique-width at most k, using \({\mathcal {O}}(k\log ^2{n})\) bits per vertex and constructible in \(\tilde{\mathcal {O}}(k(n+m))\) time from a given k-expression. Doing so, we match the label size obtained by Courcelle and Vanicat (DAM 2016), while we considerably improve the dependency on k in their scheme. As a corollary, we get an \(\tilde{\mathcal {O}}(kn^2)\)-time algorithm for computing All-Pairs Shortest-Paths on n-vertex graphs of clique-width at most k, being given a k-expression. This partially answers an open question of Kratsch and Nelles (STACS’20). Our algorithms work for graphs with non-negative vertex-weights, under two different types of distances studied in the literature. For that, we introduce a new type of orthogonal range query as a side contribution of this work, that might be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. In all fairness, the labeling scheme of Courcelle and Vanicat can be applied to many more problems than just the computation of the distances in the graph.

  2. This is a slightly different formula than in Lemma 3.3, which is for vertex-weighted graphs.

References

  1. Abboud, A., Williams, V.V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 377–391. SIAM (2016)

  2. Bondy, J.A., Murty, U.S.R.: Graph theory. Graduate Texts in Mathematics, vol. 244. Springer-Verlag, London (2008)

    Google Scholar 

  3. Borie, R., Johnson, J., Raghavan, V., Spinrad, J.: Robust polynomial time algorithms on clique-width \(k\) graphs. (2002)

  4. Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the clique-width of \(H\)-free split graphs. Discrete Appl. Math. 211, 30–39 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandstädt, A., Dabrowski, K.K., Huang, S., Paulusma, D.: Bounding the Clique-Width of \(H\)-Free Chordal Graphs. J. of Graph Theory 86(1), 42–77 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandstädt, A., Dragan, F.F., Le, H.-O., Mosca, R.: New graph classes of bounded clique-width. Theory of Comput. Syst. 38(5), 623–645 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandstadt, A., Engelfriet, J., Le, H.-O., Lozin, V.V.: Clique-width for \(4\)-vertex forbidden subgraphs. Theory of Comput. Syst. 39(4), 561–590 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandstädt, A., Klembt, T., Mahfud, S.: \(P_6\)-and triangle-free graphs revisited: Structure and bounded clique-width. Discrete Math. & Theor. Comput. Sci. 8(1), 173–188 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Brandstädt, A., Le, H.-O., Mosca, R.: Gem-and co-gem-free graphs have bounded clique-width. Int. J. of Foundations of Comput. Sci. 15(01), 163–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brandstädt, A., Le, H.-O., Mosca, R.: Chordal co-gem-free and (\(P_5\), gem)-free graphs have bounded clique-width. Discrete Appl. Math. 145(2), 232–241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bringmann, K., Husfeldt, T., Magnusson, M.: Multivariate Analysis of Orthogonal Range Searching and Graph Distances. Algorithmica, pp. 1–24 (2020)

  12. Cabello, S.: Computing the inverse geodesic length in planar graphs and graphs of bounded treewidth. Technical Report (2019). arXiv: 1908.01317

  13. Cabello, S., Knauer, C.: Algorithms for graphs of bounded treewidth via orthogonal range searching. Comput. Geom. 42(9), 815–824 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Corneil, D.G., Habib, M., Lanlignel, J.-M., Reed, B., Rotics, U.: Polynomial Time Recognition of Clique-Width \(\le 3\) Graphs. In: Latin American Theoretical INformatics Symposium (LATIN), volume 1776 of Lecture Notes in Computer Science, pp. 126–134. Springer (2000)

  15. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. on Comput. 34(4), 825–847 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. ACM Trans. on Algorithms (TALG) 15(3), 1–57 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. and Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Courcelle, B., Heggernes, P., Meister, D., Papadopoulos, C., Rotics, U.: A characterisation of clique-width through nested partitions. Discrete Appl. Math. 187, 70–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded clique-width. Discrete Appl. Math. 131(1), 129–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. on Algebr. Discrete Methods 3(2), 214–228 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dabrowski, K.K., Paulusma, D.: Classifying the clique-width of \(H\)-free bipartite graphs. Discrete Appl. Math. 200, 43–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dabrowski, K.K., Paulusma, D.: Clique-width of graph classes defined by two forbidden induced subgraphs. The Comput. J. 59(5), 650–666 (2016)

    Article  MathSciNet  Google Scholar 

  24. Das, K., Samanta, S., Pal, M.: Study on centrality measures in social networks: A survey. Soc. network anal. and mining 8(1), 1–11 (2018)

    Google Scholar 

  25. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, 4th edn. Springer, Berlin (2010)

    Google Scholar 

  26. Dragan, F.F., Yan, C.: Collective tree spanners in graphs with bounded parameters. Algorithmica 57(1), 22–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ducoffe, G.: Optimal Centrality Computations Within Bounded Clique-Width Graphs. In: Golovach, P.A., Zehavi, M. (eds.) International Symposium on Parameterized and Exact Computation (IPEC 2021), volume 214 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 16:1–16:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

  28. Ducoffe, G., Popa, A.: The b-matching problem in distance-hereditary graphs and beyond. In: International Symposium on Algorithms and Computation (ISAAC), volume 123 of Leibniz International Proceedings in Informatics, pp. 30:1–30:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

  29. Ducoffe, G., Popa, A.: The use of a pruned modular decomposition for maximum matching algorithms on some graph classes. In: International Symposium on Algorithms and Computation (ISAAC), volume 123 of Leibniz International Proceedings in Informatics, pp. 6:1–6:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018)

  30. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 1 of Lecture Notes in Computer Science, pp. 117–128. Springer (2001)

  31. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width is NP-complete. SIAM J. on Discrete Math. 23(2), 909–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fomin, F., Korhonen, T.: Fast fpt-approximation of branchwidth. Technical Report (2021) arXiv: 2111.03492

  33. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameterizations. SIAM J. on Comput. 39(5), 1941–1956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Almost optimal lower bounds for problems parameterized by clique-width. SIAM J. on Comput. 43(5), 1541–1563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S., Zehavi, M.: Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring. ACM Trans. on Algorithms 15(1), 9 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fomin, F.V., Lokshtanov, D., Saurabh, S., Pilipczuk, M., Wrochna, M.: Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. ACM Trans. on Algorithms 14(3), 34:1-34:45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, 35–41 (1977)

  38. Fürer, M.: A natural generalization of bounded tree-width and bounded clique-width. In: Latin American Symposium on Theoretical Informatics, pp. 72–83. Springer (2014)

  39. Gajarskỳ, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: International Symposium on Parameterized and Exact Computation, pp. 163–176. Springer (2013)

  40. Gavoille, C., Paul, C.: Distance labeling scheme and split decomposition. Discrete Math. 273(1–3), 115–130 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gavoille, C., Peleg, D., Pérennes, S., Raz, R.: Distance labeling in graphs. J. of Algorithms 53(1), 85–112 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs. Theor. comput. sci. 689, 67–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Goldman, A.: Optimal center location in simple networks. Transp. sci. 5(2), 212–221 (1971)

    Article  MathSciNet  Google Scholar 

  44. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. of Foundations of Comput. Sci. 11(03), 423–443 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theor. Comput. Sci. 234(1–2), 59–84 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hage, P., Harary, F.: Eccentricity and centrality in networks. Soc. networks 17(1), 57–63 (1995)

    Article  Google Scholar 

  47. Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multiterminal flow networks and computing flows in networks of small treewidth. J. of Comput. and Syst. Sci. 57(3), 366–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J.on Comput. 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  49. Iwata, Y., Ogasawara, T., Ohsaka, N.: On the power of tree-depth for fully polynomial FPT algorithms. In: International Symposium on Theoretical Aspects of Computer Science (STACS), volume 96 of Leibniz International Proceedings in Informatics, pp. 41:1–41:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2018)

  50. Kamali, S.: Compact representation of graphs of small clique-width. Algorithmica 80(7), 2106–2131 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kratsch, S., Nelles, F.: Efficient and adaptive parameterized algorithms on modular decompositions. In: European Symposia on Algorithms (ESA), pp. 55:1–55:15 (2018)

  52. Kratsch, S., Nelles, F.: Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths. In: 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), volume 154 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 38:1–38:15. Dagstuhl, Germany (2020). Schloss Dagstuhl–Leibniz-Zentrum für Informatik

  53. Lozin, V., Rautenbach, D.: Chordal bipartite graphs of bounded tree-and clique-width. Discrete Math. 283(1–3), 151–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Makowsky, J.A., Rotics, U.: On the clique-width of graphs with few \(P_4\)’s. Int. J. of Foundations of Comput. Sci. 10(03), 329–348 (1999)

    Article  MATH  Google Scholar 

  55. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. of Comb. Theory, Ser. B. 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. Rao, M.: Clique-width of graphs defined by one-vertex extensions. Discrete Math. 308(24), 6157–6165 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  58. Suchan, K., Todinca, I.: On powers of graphs of bounded NLC-width (clique-width). Discrete Appl. Math. 155(14), 1885–1893 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  59. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. J. of the ACM (JACM) 46(3), 362–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. Vanherpe, J.-M.: Clique-width of partner-limited graphs. Discrete math. 276(1–3), 363–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ducoffe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by project PN-19-37-04-01 “New solutions for complex problems in current ICT research fields based on modelling and optimization”, funded by the Romanian Core Program of the Ministry of Research and Innovation (MCI) 2019-2022. It was also supported by Grant TC ICUB-SSE 15109-26.07.2021, “The complexity landscape of Maximum Matching”. Results of this paper were partially presented at the IPEC’21 conference [27].

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducoffe, G. Optimal Centrality Computations Within Bounded Clique-Width Graphs. Algorithmica 84, 3192–3222 (2022). https://doi.org/10.1007/s00453-022-01015-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-01015-w

Keywords

Navigation