Skip to main content
Log in

Runtime Analysis for Self-adaptive Mutation Rates

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We propose and analyze a self-adaptive version of the \((1,\lambda )\) evolutionary algorithm in which the current mutation rate is encoded within the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of \(O(n\lambda /\log \lambda +n\log n)\) when \(\lambda\) is at least \(C \ln n\) for some constant \(C > 0\). For all values of \(\lambda \ge C \ln n\), this performance is asymptotically best possible among all \(\lambda\)-parallel mutation-based unbiased black-box algorithms. Our result rigorously proves for the first time that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. In particular, it gives asymptotically the same performance as the relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gießen, Witt, and Yang (Algorithmica 2019). On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In this part of the proof, we use the fact that \(F=32\). This does not mean that for other not too small values of F we would not obtain similar results, but it increases the readability to work with this concrete value.

References

  1. Akimoto, Y., Auger, A., Glasmachers, T.: Drift theory in continuous search spaces: expected hitting time of the (1 + 1)-ES with 1/5 success rule. In: Proceedings of GECCO ’18, pp. 801–808. ACM (2018)

  2. Auger, A., Doerr, B. (eds.): Theory of Randomized Search Heuristics. World Scientific Publishing, Singapore (2011)

    MATH  Google Scholar 

  3. Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the \((\mu +\lambda )\) EA optimizing OneMax. In: Proceedings of GECCO ’18, pp. 1459–1466. ACM (2018)

  4. Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring population size of the \({(\mu ,\lambda )}\) EA. In: Proceedings of GECCO ’19, pp. 1461–1469. ACM (2019)

  5. Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of ECAL ’92, pp. 263–271. MIT Press (1992)

  6. Böttcher, S., Doerr, B., Neumann, F.: Optimal fixed and adaptive mutation rates for the LeadingOnes problem. In: Proceedings of PPSN ’10, pp. 1–10. Springer (2010)

  7. Bernstein, S.N.: On a modification of Chebyshev’s inequality and of the error formula of Laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math. 1 4, 38–49 (1924)

    Google Scholar 

  8. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Springer, Berlin (2009)

    Book  Google Scholar 

  9. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Proceedings of PPSN ’14, pp. 892–901. Springer (2014)

  10. Corus, D., Dang, D.-C.D.-C., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and other search processes. IEEE Trans. Evol. Comput. 22, 707–719 (2018)

    Article  Google Scholar 

  11. Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. IEEE Trans. Syst. Man Cybern. Part B 39, 1092–1106 (2009)

    Article  Google Scholar 

  12. Doerr, B., Doerr, C.: Optimal parameter choices through self-adjustment: applying the 1/5-th rule in discrete settings. In: Proceedings of GECCO ’15, pp. 1335–1342. ACM (2015)

  13. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the \((1+(\lambda,\lambda ))\) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

    Article  MathSciNet  Google Scholar 

  14. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimization: provable performance gains through dynamic parameter choices. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 271–321. Springer, Berlin (2020)

    Chapter  Google Scholar 

  15. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based genetic algorithms. In: Proceedings of GECCO ’13, pp. 781–788. ACM (2013)

  16. Doerr, B., Doerr, C., Kötzing, T.: Provably optimal self-adjusting step sizes for multi-valued decision variables. In: Proceedings of PPSN ’16, pp. 782–791. Springer (2016)

  17. Doerr, B., Doerr, C., Kötzing, T.: Static and self-adjusting mutation strengths for multi-valued decision variables. Algorithmica 80, 1732–1768 (2018)

    Article  MathSciNet  Google Scholar 

  18. Doerr, B., Doerr, C., Yang, J.: \(k\)-bit mutation with self-adjusting \(k\) outperforms standard bit mutation. In: Proceedings of PPSN ’16, pp. 824–834. Springer (2016)

  19. Doerr, B., Doerr, C., Yang, J.: Optimal parameter choices via precise black-box analysis. Theor. Comput. Sci. 801, 1–34 (2020)

    Article  MathSciNet  Google Scholar 

  20. Doerr, B., Fouz, M., Witt, C.: Quasirandom evolutionary algorithms. In: Proceedings of GECCO ’10, pp. 1457–1464. ACM (2010)

  21. Doerr, B., Fouz, M., Witt, C.: Sharp bounds by probability-generating functions and variable drift. In: Proceedings of GECCO ’11, pp. 2083–2090. ACM (2011)

  22. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)

    Article  MathSciNet  Google Scholar 

  23. Doerr, B., Gießen, C., Witt, C., Yang, J.: The \({(1 + \lambda )}\) evolutionary algorithm with self-adjusting mutation rate. Algorithmica 81, 593–631 (2019)

    Article  MathSciNet  Google Scholar 

  24. Doerr, B., Jansen, T., Sudholt, D., Winzen, C., Zarges, C.: Mutation rate matters even when optimizing monotone functions. Evol. Comput. 21, 1–21 (2013)

    Article  Google Scholar 

  25. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  26. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)

    Article  MathSciNet  Google Scholar 

  27. Doerr, B., Künnemann, M.: Optimizing linear functions with the (1+\(\lambda\)) evolutionary algorithm—different asymptotic runtimes for different instances. Theor. Comput. Sci. 561, 3–23 (2015)

    Article  MathSciNet  Google Scholar 

  28. Dang, D.-C., Lehre, P.K.: Runtime analysis of non-elitist populations: From classical optimisation to partial information. Algorithmica 75, 428–461 (2016)

    Article  MathSciNet  Google Scholar 

  29. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Proceedings of PPSN ’16, pp. 803–813. Springer (2016)

  30. Doerr, B., Lissovoi, A., Oliveto, P.S., Warwicker, J.A.: On the runtime analysis of selection hyper-heuristics with adaptive learning periods. In: Proceedings of GECCO ’18, pp. 1015–1022. ACM (2018)

  31. Doerr, B., Neumann, F.: Theory of Evolutionary Computation—Recent Developments in Discrete Optimization. Springer, Berlin (2019)

    MATH  Google Scholar 

  32. Doerr, B.: An elementary analysis of the probability that a binomial random variable exceeds its expectation. Stat. Probab. Lett. 139, 67–74 (2018)

    Article  MathSciNet  Google Scholar 

  33. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theor. Comput. Sci. 773, 115–137 (2019)

    Article  MathSciNet  Google Scholar 

  34. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 1–87. Springer, Berlin (2020). https://arxiv.org/abs/1801.06733

  35. Doerr, B., Witt, C., Yang, J.: Runtime analysis for self-adaptive mutation rates. In: Proceedings of GECCO ’18, pp. 1475–1482. ACM (2018)

  36. Gießen, C., Witt, C.: The interplay of population size and mutation probability in the (1 + \(\lambda\)) EA on OneMax. Algorithmica 78, 587–609 (2017)

    Article  MathSciNet  Google Scholar 

  37. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 13, 502–525 (1982)

    Article  MathSciNet  Google Scholar 

  38. Hwang, H.-K., Panholzer, A., Rolin, N., Tsai, T.-H., Chen, W.-M.: Probabilistic analysis of the (1+1)-evolutionary algorithm. Evol. Comput. 26, 299–345 (2018)

    Article  Google Scholar 

  39. Hwang, H.-K., Witt, C.: Sharp bounds on the runtime of the (1+1) EA via drift analysis and analytic combinatorial tools. In: Proceedings of FOGA ’19, pp. 1–12. ACM (2019)

  40. Jägersküpper, J.: Combining Markov-chain analysis and drift analysis - the (1+1) evolutionary algorithm on linear functions reloaded. Algorithmica 59, 409–424 (2011)

    Article  MathSciNet  Google Scholar 

  41. Jansen, T.: Analyzing Evolutionary Algorithms—The Computer Science Perspective. Springer, Berlin (2013)

    Book  Google Scholar 

  42. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Evol. Comput. 13, 413–440 (2005)

    Article  Google Scholar 

  43. Johannsen, D.: Random combinatorial structures and randomized search heuristics. PhD thesis, Saarland University (2010)

  44. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy—and when not. In: Proceedings of FOCI ’07, pp. 25–32. IEEE (2007)

  45. Jansen, T., Wegener, I.: On the analysis of a dynamic evolutionary algorithm. J. Discret. Algorithms 4, 181–199 (2006)

    Article  MathSciNet  Google Scholar 

  46. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19, 167–187 (2015)

    Article  Google Scholar 

  47. Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic OneMax. In: Proceedings of FOGA ’15, pp. 40–51. ACM (2015)

  48. Lehre, P.K.: Negative drift in populations. In: Proceedings of PPSN ’10, pp. 244–253. Springer (2010)

  49. Lässig, J., Sudholt, D.: Adaptive population models for offspring populations and parallel evolutionary algorithms. In: Proceedings of FOGA ’11, pp. 181–192. ACM (2011)

  50. Lehre, P.K., Witt, C.: Concentrated hitting times of randomized search heuristics with variable drift. In: Proceedings of ISAAC ’14, pp. 686–697. Springer (2014)

  51. Lehre, P.K., Yao, X.: On the impact of mutation–selection balance on the runtime of evolutionary algorithms. IEEE Trans. Evol. Comput. 16, 225–241 (2012)

  52. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern. 2, 243–284 (2009)

    Article  MathSciNet  Google Scholar 

  53. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: Proceedings of PPSN ’92, pp. 15–26. Elsevier (1992)

  54. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization—Algorithms and Their Computational Complexity. Springer, Berlin (2010)

    MATH  Google Scholar 

  55. Robbins, H.: A remark on Stirling’s formula. Am. Math. Mon. 62, 26–29 (1955)

    MathSciNet  MATH  Google Scholar 

  56. Rowe, J.E.: Linear multi-objective drift analysis. Theor. Comput. Sci. 736, 25–40 (2018)

    Article  MathSciNet  Google Scholar 

  57. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda\)) evolutionary algorithm. Theor. Comput. Sci. 545, 20–38 (2014)

    Article  MathSciNet  Google Scholar 

  58. Smit, S.K., Eiben, A.E.: Beating the ‘world champion’ evolutionary algorithm via REVAC tuning. In: Proceedings of CEC ’10, pp. 1–8. IEEE Press (2010)

  59. Sudholt, D.: A new method for lower bounds on the running time of evolutionary algorithms. IEEE Trans. Evol. Comput. 17, 418–435 (2013)

    Article  Google Scholar 

  60. Wegener, I.: Simulated annealing beats Metropolis in combinatorial optimization. In: Proceedings of ICALP ’05, pp. 589–601. Springer (2005)

  61. Witt, C.: Runtime analysis of the (\(\mu\) + 1) EA on simple pseudo-Boolean functions. Evol. Comput. 14, 65–86 (2006)

    Google Scholar 

  62. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Christian Gießen for useful discussions on this topic. This work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with Gaspard Monge Program for optimization, operations research and their interactions with data sciences. This publication is based upon work from COST Action CA15140, supported by COST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Witt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended version of a paper appearing at the Genetic and Evolutionary Computation Conference 2018 [35]. This version contains all proofs, whereas most of them for reasons of space did not fit into the conference version. In this version, the main result is valid for all \(\lambda \ge C \ln (n)\), C a sufficiently large constant, whereas the conference version needed \(\lambda \ge (\ln n)^{1+\varepsilon }\) for an arbitrary \(\varepsilon >0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doerr, B., Witt, C. & Yang, J. Runtime Analysis for Self-adaptive Mutation Rates. Algorithmica 83, 1012–1053 (2021). https://doi.org/10.1007/s00453-020-00726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00726-2

Keywords

Navigation