Skip to main content
Log in

The Kernelization Complexity of Connected Domination in Graphs with (no) Small Cycles

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the Parameterized Connected Dominating Set problem the input consists of a graph G and a positive integer k, and the question is whether there is a set S of at most k vertices in G—a connected dominating set of G—such that (i) S is a dominating set of G, and (ii) the subgraph G[S] induced by S is connected; the parameter is k. The underlying decision problem is a basic connectivity problem which is long known to be NP-complete, and it has been extensively studied using several algorithmic approaches.

Parameterized Connected Dominating Set is W[2]-hard, and therefore it is unlikely (Downey and Fellows, Parameterized Complexity, Springer, 1999) that the problem has fixed-parameter tractable (FPT) algorithms or polynomial kernels in graphs in general. We investigate the effect of excluding short cycles, as subgraphs, on the kernelization complexity of Parameterized Connected Dominating Set. The girth of a graph G is the length of a shortest cycle in G. It turns out that the Parameterized Connected Dominating Set problem is hard on graphs with small cycles, and becomes progressively easier as the girth increases. More precisely, we obtain the following kernelization landscape: Parameterized Connected Dominating Set

  • does not have a kernel of any size on graphs of girth three or four (since the problem is W[2]-hard);

  • admits a kernel of size 2k k 3k on graphs of girth at least five;

  • has no polynomial kernel (unless the Polynomial Hierarchy collapses to the third level) on graphs of girth at most six, and,

  • has a cubic (\(\mathcal {O}(k^{3})\)) vertex kernel on graphs of girth at least seven.

While there is a large and growing collection of parameterized complexity results available for problems on graph classes characterized by excluded minors, our results add to the very few known in the field for graph classes characterized by excluded subgraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Unless the Polynomial Hierarchy collapses to the third level. To reduce clutter, we drop the mention of this condition from now onwards; it is to be taken as implicitly present whenever we mention the absence of polynomial kernels.

References

  1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S., Barak, B.: Computational Complexity—A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels (extended abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) Automata, Languages and Programming, 35th International Colloquium, ICALP2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, Reykjavik, Iceland, July 7–11, 2008. Lecture Notes in Computer Science, vol. 5125, pp. 563–574. Springer, Berlin (2008)

    Google Scholar 

  4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS2009, Atlanta, Georgia, USA, October 25–27, 2009 pp. 629–638. IEEE Computer Society, Los Alamitos (2009)

    Chapter  Google Scholar 

  6. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

    Article  MATH  Google Scholar 

  7. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization hardness of connectivity problems in d-degenerate graphs. In: Thilikos, D.M. (ed.) Graph Theoretic Concepts in Computer Science—36th International Workshop, WG2010, Zarós, Crete, Greece, June 28–30, 2010. Lecture Notes in Computer Science, vol. 6410, pp. 147–158. Springer, Berlin (2010). Revised Papers

    Google Scholar 

  8. Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes. In: Kannan, R., Kumar, K.N. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS2009. Leibniz International Proceedings in Informatics (LIPIcs), vol. 4, pp. 157–168. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2009)

    Google Scholar 

  9. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  10. Dom, M., Lokshtanov, D., Saurabh, S.: Incompressibility through colors and IDs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) Automata, Languages and Programming, 36th International Colloquium, ICALP2009, Proceedings, Part I, Rhodes, Greece, July 5–12, 2009. Lecture Notes in Computer Science, vol. 5555, pp. 378–389. Springer, Berlin (2009)

    Chapter  Google Scholar 

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  12. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1, 195–207 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fernau, H.: Parameterized algorithmics: a graph-theoretic approach. Habilitationsschrift, Universität Tübingen, Germany (2005)

  14. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. In: Charikar, M. (ed.) Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA2010, Austin, Texas, USA, January 17–19, 2010, pp. 503–510. SIAM, Philadelphia (2010)

    Chapter  Google Scholar 

  15. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17–20, 2008, pp. 133–142. ACM, New York (2008)

    Google Scholar 

  16. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77, 91–106 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  18. Golovach, P.A., Villanger, Y.: Parameterized complexity for domination problems on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) Graph-Theoretic Concepts in Computer Science, 34th International Workshop, WG2008, Durham, UK, June 30–July 2, 2008. Lecture Notes in Computer Science, vol. 5344, pp. 195–205. Springer, Berlin (2008). Revised Papers

    Chapter  Google Scholar 

  19. Gu, Q., Imani, N.: Connectivity is not a limit for kernelization: planar connected dominating set. In: López-Ortiz, A. (ed.) LATIN2010: Theoretical Informatics, 9th Latin American Symposium, Proceedings, Oaxaca, Mexico, April 19–23, 2010. Lecture Notes in Computer Science, vol. 6034, pp. 26–37. Springer, Berlin (2010)

    Chapter  Google Scholar 

  20. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  21. Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when the Stars are out. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming—38th International Colloquium, ICALP2011, Proceedings, Part I, Zurich, Switzerland, July 4–8, 2011. Lecture Notes in Computer Science, vol. 6755, pp. 462–473. Springer, Berlin (2011)

    Chapter  Google Scholar 

  22. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, March 20–22, 1972. The IBM Research Symposia Series, pp. 85–103. Plenum, New York (1972)

    Chapter  Google Scholar 

  23. Lokshtanov, D., Mnich, M., Saurabh, S.: Linear kernel for planar connected dominating set. In: Chen, J., Cooper, S.B. (eds.) Theory and Applications of Models of Computation, 6th Annual Conference, TAMC2009, Proceedings, Changsha, China, May 18–22, 2009. Lecture Notes in Computer Science, vol. 5532, pp. 281–290. Springer, Berlin (2009)

    Google Scholar 

  24. Lokshtanov, D., Mnich, M., Saurabh, S.: A linear kernel for a planar connected dominating set. Theor. Comput. Sci. 412(23), 2536–2543 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Luo, W., Wang, J., Feng, Q., Guo, J., Chen, J.: An improved kernel for planar connected dominating set. In: Ogihara, M., Tarui, J. (eds.) Theory and Applications of Models of Computation—8th Annual Conference, TAMC2011, Proceedings, Tokyo, Japan, May 23–25, 2011. Lecture Notes in Computer Science, vol. 6648, pp. 70–81. Springer, Berlin (2011)

    Google Scholar 

  26. Misra, N., Philip, G., Raman, V., Saurabh, S.: The effect of girth on the kernelization complexity of Connected Dominating Set. In: Lodaya, K., Mahajan, M. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS2010, Chennai, India, December 15–18, 2010. Leibniz International Proceedings in Informatics (LIPIcs), vol. 8, pp. 96–107. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl (2010)

    Google Scholar 

  27. Nederlof, J.: Fast polynomial-space algorithms using Möbius inversion: improving on Steiner tree and related problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas, W. (eds.) Automata, Languages and Programming, 36th International Colloquium, ICALP2009, Proceedings, Part I, Rhodes, Greece, July 5–12, 2009. Lecture Notes in Computer Science, vol. 5555, pp. 713–725. Springer, Berlin (2009)

    Chapter  Google Scholar 

  28. Philip, G., Raman, V., Sikdar, S.: Solving dominating set in larger classes of graphs: fpt algorithms and polynomial kernels. In: Fiat, A., Sanders, P. (eds.) Algorithms—ESA 2009, 17th Annual European Symposium, Proceedings, Copenhagen, Denmark, September 7–9, 2009. Lecture Notes in Computer Science, vol. 5757, pp. 694–705. Springer, Berlin (2009)

    Google Scholar 

  29. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Robertson, N., Seymour, P.D.: Graph minors. VIII. A Kuratowski theorem for general surfaces. J. Comb. Theory, Ser. B 48(2), 255–288 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Thomassen, C.: A simpler proof of the excluded minor theorem for higher surfaces. J. Comb. Theory, Ser. B 70(2), 306–311 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geevarghese Philip.

Additional information

A preliminary version of this paper appeared in the proceedings of FSTTCS 2010 [26].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, N., Philip, G., Raman, V. et al. The Kernelization Complexity of Connected Domination in Graphs with (no) Small Cycles. Algorithmica 68, 504–530 (2014). https://doi.org/10.1007/s00453-012-9681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9681-z

Keywords

Navigation