Skip to main content
Log in

Interval Partitions and Polynomial Factorization

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The fastest algorithms for factoring a univariate polynomial f of degree n over a finite field use a baby-step/giant-step approach. The set {1,…,n} of potential factor degrees is partitioned into intervals. In a first stage, for each interval the product of all irreducible factors with degree in the interval is determined, generalizing the method of Cantor & Zassenhaus. In a second stage, each polynomial corresponding to a multi-factor interval—containing two or more irreducible factors—is completely factored. The goal in this work is to analyze the behavior of this algorithm on uniformly random squarefree input polynomials, for various partitions. To this end, we study several parameters such as the expected number of multi-factor intervals, the expected number of irreducible factors with degrees lying in multi-factor intervals, the number of gcds executed in the factoring process, the expected total degree among the irreducible factors with degrees in multi-factor intervals, and the probability of a polynomial to have no multi-factor interval. We concentrate on partitions with polynomially growing interval sizes, and determine the partition that minimizes the expected number of gcds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1970)

    Google Scholar 

  2. Bonorden, O., von zur Gathen, J., Gerhard, J., Müller, O., Nöcker, M.: Factoring a binary polynomial of degree over one million. ACM SIGSAM Bull. 35(1), 16–18 (2001)

    Article  MATH  Google Scholar 

  3. Brent, R.P., Kung, H.-T.: Fast algorithms for manipulating formal power series. J. Assoc. Comput. Mach. 25, 581–595 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brent, R.P., Zimmermann, P.: A multi-level blocking distinct-degree factorization algorithm. In: Mullen, G.L., Panario, D., Shparlinski, I. (eds.) Proc. Fq8, Melbourne, Australia. Contemporary Mathematics, vol. 461, pp. 47–58. Am. Math. Soc., Providence (2008)

    Google Scholar 

  5. Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36, 587–592 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Darboux, G.: Mémoires sur l’approximation des fonctions de trés-grands nombres, et sur une classe étendue de développements en série. Journal de Mathématiques Pures et Appliquées 4, 5–56, 377–416 (1878)

    Google Scholar 

  7. Flajolet, P., Fusy, É., Gourdon, X., Panario, D., Pouyanne, N.: A hybrid of Darboux’s method and singularity analysis in combinatorial asymptotics. Electron. J. Comb. 13, R103 (2006)

    MathSciNet  Google Scholar 

  8. Flajolet, P., Gourdon, X., Panario, D.: The complete analysis of a polynomial factorization algorithm over finite fields. J. Algorithms 40, 37–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2), 216–240 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  11. Gourdon, X.: Combinatoire, algorithmique et géométrie des polynômes. Thèse, École Polytechnique (1996)

  12. Graham, R., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  13. Kaltofen, E., Shoup, V.: Subquadratic-time factorization of polynomials over finite fields. Math. Comput. 67, 1179–1197 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 146–155 (2008)

    Chapter  Google Scholar 

  15. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Applications, vol. 20. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  16. Odlyzko, A.: Asymptotic enumeration methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1063–1229. Elsevier, Amsterdam (1995)

    Google Scholar 

  17. Olver, F.: Asymptotics and Special Functions. AKP Classics. AK Peters, Wellesley (1997)

    MATH  Google Scholar 

  18. Panario, D.: What do random polynomials over finite fields look like. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Proc. Fq7, Toulouse, France. Lecture Notes in Computer Science, vol. 2948, pp. 89–108. Springer, Berlin (2004)

    Google Scholar 

  19. Sedgewick, R., Flajolet, P.: An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading (1996)

    MATH  Google Scholar 

  20. Shoup, V.: A new polynomial factorization algorithm and its implementation. J. Symb. Comput. 20, 363–397 (1996)

    Article  MathSciNet  Google Scholar 

  21. von zur Gathen, J., Gerhard, J.: Arithmetic and factorization of polynomials over \({\mathbb{F}}_{2}\). In: Proc. ISSAC’96, Zürich, Switzerland, pp. 1–9. ACM, New York (1996)

    Google Scholar 

  22. von zur Gathen, J., Gerhard, J.: Polynomial factorization over \({\mathbb{F}}_{2}\). Math. Comput. 71, 1677–1698 (2002)

    Article  MATH  Google Scholar 

  23. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  24. von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey. J. Symb. Comput. 31, 3–17 (2001)

    Article  MATH  Google Scholar 

  25. von zur Gathen, J., Shoup, V.: Computing Frobenius maps and factoring polynomials. Comput. Complex. 2, 187–224 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Panario.

Additional information

Dedicated to the memory of Philippe Flajolet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von zur Gathen, J., Panario, D. & Richmond, B. Interval Partitions and Polynomial Factorization. Algorithmica 63, 363–397 (2012). https://doi.org/10.1007/s00453-011-9537-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9537-y

Keywords

Navigation