Skip to main content
Log in

Why Neighbor-Joining Works

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We show that the neighbor-joining algorithm is a robust quartet method for constructing trees from distances. This leads to a new performance guarantee that contains Atteson’s optimal radius bound as a special case and explains many cases where neighbor-joining is successful even when Atteson’s criterion is not satisfied. We also provide a proof for Atteson’s conjecture on the optimal edge radius of the neighbor-joining algorithm. The strong performance guarantees we provide also hold for the quadratic time fast neighbor-joining algorithm, thus providing a theoretical basis for inferring very large phylogenies with neighbor-joining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atteson, K.: The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica 25, 251–278 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bruno, W.J., Socci, N.D., Halpern, A.L.: Weighted neighbor-joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol. Biol. Evol. 17(1), 189–197 (2000)

    Google Scholar 

  3. Bryant, D.: On the uniqueness of the selection criterion in neighbor-joining. J. Classif. 22(1), 3–15 (2005)

    Article  MATH  Google Scholar 

  4. Dai, W., Xu, Y., Zhu, B.: On the edge l radius of Saitou and Nei’s method for phylogenetic reconstruction. Theor. Comput. Sci. 369(1–3), 448–455 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Desper, R., Gascuel, O.: The minimum evolution distance-based approach to phylogenetic inference. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford (2005)

    Google Scholar 

  6. Elias, I., Lagergren, J.: Fast neighbor joining. In: Proceedings of the International Colloquium on Automata, Languages and Programming (ICALP’05) (2005)

  7. Erdös, P.L., Steel, M.A., Székely, L.A., Warnow, T.J.: A few logs suffice to build (almost) all trees, I. Random Struct. Algorithms 14(2), 153–184 (1999)

    Article  MATH  Google Scholar 

  8. Farris, J.S., Albert, V.A., Källersjö, M., Lipscomb, D., Kluge, A.G.: Parsimony jackknifing outperforms neighbor-joining. Cladistics 12, 99–124 (1996)

    Article  Google Scholar 

  9. Felsenstein, J.: PHYLIP (phylogeny inference package) version 3.5c. Tech. report, Department of Genetics, University of Washington, Seattle (1993)

  10. Gascuel, O.: A note on Sattath and Tversky’s, Saitou and Nei’s, and Studier and Keppler’s algorithms for inferring phylogenies from evolutionary distances. Mol. Biol. Evol. 11(6), 961–963 (1994)

    Google Scholar 

  11. Gascuel, O.: BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14(7), 685–695 (1997)

    Google Scholar 

  12. Gascuel, O., Steel, M.: Neighbor-joining revealed. Mol. Biol. Evol. 23(11), 1997–2000 (2006)

    Article  Google Scholar 

  13. Hall, B.G.: Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Mol. Biol. Evol. 22(3), 792–802 (2005)

    Article  Google Scholar 

  14. Huelsenbeck, J., Hillis, D.: Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42(3), 247–264 (1993)

    Google Scholar 

  15. John, K.St., Warnow, T., Moret, B., Vawter, L.: Performance study of phylogenetic methods: (unweighted) quartet methods and neighbor joining. J. Algorithms 48, 174–193 (2003)

    Google Scholar 

  16. Kuhner, M.K., Felsenstein, J.: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11, 459–468 (1994)

    Google Scholar 

  17. Kumar, S., Gadagker, S.R.: Efficiency of the neighbor-joining method in reconstructing evolutionary relationships in large phylogenies. J. Mol. Evol. 51, 544–553 (2000)

    Google Scholar 

  18. Levy, D., Yoshida, R., Pachter, L.: Beyond pairwise distances: neighbor joining with phylogenetic diversity estimates. Mol. Biol. Evol. 23, 491–498 (2006)

    Article  Google Scholar 

  19. Olsen, G.J., Matsuda, H., Hagstrom, R., Overbeek, R.: fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10, 41–48 (1994)

    Google Scholar 

  20. Ota, S., Li, W.H.: NJML: a hybrid algorithm for the neighbor-joining and maximum likelihood methods. Mol. Biol. Evol. 17(9), 1401–1409 (2000)

    Google Scholar 

  21. Pauplin, Y.: Direct calculation of tree length using a distance matrix. J. Mol. Evol. 51, 41–47 (2000)

    Google Scholar 

  22. Rambaut, A., Grassly, N.C.: Seq-Gen: an application for the Monte Carlo simulation of DNA sequences evolution along phylogenetic trees. Comput. Appl. Biosci. 13, 235–238 (1997)

    Google Scholar 

  23. Ranwez, V., Gascuel, O.: Improvement of distance-based phylogenetic methods by a local maximum likelihood approach using triplets. Mol. Biol. Evol. 19(11), 1952–1963 (2002)

    Google Scholar 

  24. Saitou, N., Nei, M.: The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  25. Sattath, S., Tversky, A.: Additive similarity trees. Psychometrika 42(6), 319–345 (1977)

    Article  Google Scholar 

  26. Semple, C., Steel, M.: Phylogenetics. Graduate Series in Mathematics and its Applications. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  27. Strimmer, K., von Haeseler, A.: Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol. 13, 964–969 (1996)

    Google Scholar 

  28. Studier, J.A., Keppler, K.J.: A note on the neighbor-joining method of Saitou and Nei. Mol. Biol. Evol. 5, 729–731 (1988)

    Google Scholar 

  29. Tamura, K., Nei, M., Kumar, S.: Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. 101, 11030–11035 (2004)

    Article  Google Scholar 

  30. Xu, Y., Dai, W., Zhu, B.: A lower bound on the edge l radius of Saitou and Nei’s method for phylogenetic reconstruction. Inf. Process. Lett. 94, 225–230 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Pachter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaescu, R., Levy, D. & Pachter, L. Why Neighbor-Joining Works. Algorithmica 54, 1–24 (2009). https://doi.org/10.1007/s00453-007-9116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9116-4

Keywords

Navigation