Skip to main content
Log in

Space Efficient Dynamic Orthogonal Range Reporting

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we present new space efficient dynamic data structures for orthogonal range reporting. The described data structures support planar range reporting queries in time O(log n+klog log (4n/(k+1))) and space O(nlog log n), or in time O(log n+k) and space O(nlog ε n) for any ε>0. Both data structures can be constructed in O(nlog n) time and support insert and delete operations in amortized time O(log 2 n) and O(log nlog log n) respectively. These results match the corresponding upper space bounds of Chazelle (SIAM J. Comput. 17, 427–462, 1988) for the static case.

We also present a dynamic data structure for d-dimensional range reporting with search time O(log d−1 n+k), update time O(log d n), and space O(nlog d−2+ε n) for any ε>0.

The model of computation used in our paper is a unit cost RAM with word size log n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 23, pp. 1–56. Am. Math. Soc., Providence (1999). Available at http://citeseer.ist.psu.edu/article/agarwal99geometric.html

    Google Scholar 

  2. Agarwal, P.K., Arge, L., Danner, A., Holland-Minkley, B.: Cache-oblivious data structures for orthogonal range searching. In: Proc. 9th Symp. on Computational Geometry, pp. 237–245 (2003)

  3. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In: Proc. 41st FOCS, pp. 198–207 (2000)

  4. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious B-trees. In: Proc. 41st FOCS, pp. 399–409 (2000)

  5. Chazelle, B.: Filtering search: a new approach to query answering. SIAM J. Comput. 15, 703–724 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17, 427–462 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chazelle, B.: Lower bounds for orthogonal range search II. The arithmetic model. J. ACM 37, 439–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chiang, J.L., Tamassia, R.: Dynamic algorithms in computational geometry. Technical Report CS-91-24, Dept. of Computer Science, Brown University (1991)

  9. Gabow, H., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th STOC, pp. 135–143 (1984)

  10. Goodman, J.E., O’Rourke, J. (ed.): Handbook of Discrete and Computational Geometry, 2nd edn. CRC Press (April 2004)

  11. Itai, A., Konheim, A.G., Rodeh, M.: A sparse table implementation of priority queues. In: Proc. 8th ICALP, pp. 417–431 (1981)

  12. Klein, R., Nurmi, O., Ottman, T., Wood, D.: A dynamic fixed windowing problem. Algorithmica 4, 535–550 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lueker, G.S.: A data structure for orthogonal range queries. In: Proc. 19th FOCS, pp. 28–34 (1978)

  14. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14, 257–276 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mehlhorn, K.: Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry. Springer, New York (1984)

    MATH  Google Scholar 

  16. Mehlhorn, K., Näher, S.: Dynamic fractional cascading. Algorithmica 5, 215–241 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mortensen, C.W.: Fully dynamic two dimensional orthogonal range and line segment intersection reporting in logarithmic time. In: Proc. of the 14th SODA, pp. 618–627 (2003)

  18. Mortensen, C.W.: Fully dynamic orthogonal range reporting on RAM. SIAM J. Comput. 35, 1494–1525 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Overmars, M.H.: Design of Dynamic Data Structures. Springer, New York (1987)

    Google Scholar 

  20. Tarjan, R.E.: A class of algorithms which require nonlinear time to maintain disjoint sets. J. Comput. Syst. Sci. 18, 110–127 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Van Kreveld, M., Overmars, M.H.: Divided K-d trees. Algorithmica 6(6), 840–858 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Van Kreveld, M., Overmars M.H.: Concatenable structures for decomposable problems, Inf. Comput. 110(1), 130–148 (1994)

    Article  MATH  Google Scholar 

  23. Willard, D.E.: New data structures for orthogonal range queries. SIAM J. Comput. 14, 232–253 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  24. Willard, D.E.: Multidimensional search trees that provide new types of memory reductions. J. ACM 34, 846–858 (1987)

    MathSciNet  Google Scholar 

  25. Willard, D.E.: Applications of range query theory to relational data base join and select operations. J. Comput. Syst. Sci. 52, 157–169 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Nekrich.

Additional information

A preliminary version of this paper appeared in the Proceedings of the 21st Annual ACM Symposium on Computational Geometry 2005.

Work partially supported by IST grant 14036 (RAND-APX).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nekrich, Y. Space Efficient Dynamic Orthogonal Range Reporting. Algorithmica 49, 94–108 (2007). https://doi.org/10.1007/s00453-007-9030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-007-9030-9

Keywords

Navigation