Skip to main content
Log in

Quantum algorithms: A survey of some recent results

  • Reguläre Beiträge
  • Published:
Informatik - Forschung und Entwicklung

Abstract

Quantum algorithms are a field of growing interest within the theoretical computer science as well as the physics community. Surprisingly, although the number of researchers working on the subject is ever-increasing, the number of quantum algorithms found so far is quite small. In fact, the task of designing new quantum algorithms has been proven to be extremely difficult. In this paper we give an overview of the known quantum algorithms and briefly describe the underlying ideas. Roughly, the algorithms presented are divided into hidden subgroup type algorithms and in amplitude amplification type algorithms. While the former deal with problems of group-theoretical nature and have the promise to yield strong separations of classical and quantum algorithms, the latter have been proved to be a prolific source of algorithms in which a polynomial speed-up as compared to classical algorithms can be achieved. We also discuss quantum algorithms which do not fall under these two categories and give a survey of techniques of general interest in quantum computing such as adiabatic computing, lower bounds for quantum algorithms, and quantum interactive proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson S (2002) Quantum lower bound for the collision problem. In: Proceedings of the Symposium on Theory of Computing (STOC’02), pp 635–642

  2. Aharonov D (1998) Quantum computation. In: Stauffer D (ed) Ann Rev Comput Phys World Sci. See also: arXiv preprint quant-ph/9812037

  3. Aharonov D, Ambainis A, Kempe J, Vazirani U (2001) Quantum walks on graphs. In: Proceedings of the Symposium on Theory of Computing (STOC’01), pp 50–59

  4. Aharonov O, Regev D (2003) A lattice problem in quantum NP. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’03) IEEE Computer Society Press, pp 210–219 See also: arXiv preprint quant-ph/0307220

  5. Aharonov D, van Dam W, Kempe J, Landau Z, Lloyd S, Regev O (2004) Adiabatic quantum computation is equivalent to standard quantum computation. arXiv preprint quant-ph/0405098

  6. Ambainis A (2002) Quantum lower bounds by quantum arguments. J Comput Syst Sci 64:750–767

    Article  MATH  MathSciNet  Google Scholar 

  7. Ambainis A (2003) Quantum walk algorithm for element distinctness. arXiv preprint quant-ph/0311001

  8. Ambainis A, Bach E, Nayak A, Vishwanath A, Watrous J (2001) One-dimensional quantum walks. In: Proceedings of the Symposium on Theory of Computing (STOC’01), pp 37–49

  9. Babai L (1985) Trading group theory for randomness. In: Proceedings of the Symposium on Theory of Computing (STOC’85), pp 421–429

  10. Bacon D, Chuang I, Harrow A (2004) Efficient quantum circuits for Schur and Clebsch-Gordan transforms. arXiv preprint quant-ph/0407082

  11. Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor PW, Sleator T, Smolin JA, Weinfurter H (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457–3467, November 1995

    Article  Google Scholar 

  12. Barenco A, Ekert A, Suominen K-A, Törmä P (1996) Approximate quantum Fourier transform and decoherence. Phys Rev A 54(1):139–146

    Article  MathSciNet  Google Scholar 

  13. Beals R (1997) Quantum computation of Fourier transforms over the symmetric groups. In: Proceedings of the Symposium on Theory of Computing (STOC’97), El Paso, Texas

  14. Beals R, Buhrman H, Cleve R, Mosca R, de Wolf R (2001) Quantum lower bounds by polynomials. J ACM 48(4):778–797

    Article  MathSciNet  MATH  Google Scholar 

  15. Bennett CH, Bernstein E, Brassard G, Vazirani U (1997) Strengths and weaknesses of quantum computing. SIAM J Comput 26(5):1510–1523

    Article  MATH  MathSciNet  Google Scholar 

  16. Bennett CH, Cirac JI, Leifer MS, Leung DW, Linden N, Popescu S, Vidal G (2002) Optimal simulation of two-qubit Hamiltonians using general local operations. Phys Rev A 66:012305

    Article  MathSciNet  Google Scholar 

  17. Bernstein E, Vazirani U (1997) Quantum complexity theory. SIAM J Comput 26(5):1411–1473

    Article  MATH  MathSciNet  Google Scholar 

  18. Berthiaume A (1996) Complexity theory retrospective II, chapter Quantum computation. Springer, New York, NY, pp 23–51

    Google Scholar 

  19. Beth T (1984) Verfahren der schnellen Fouriertransformation. Teubner, Stuttgart

    Google Scholar 

  20. Beth T (1987) On the computational complexity of the general discrete Fourier transform. Theor Comput Sci 51:331–339

    Article  MATH  MathSciNet  Google Scholar 

  21. Beth T, Rötteler M (2001) Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments, Springer Tracts in Modern Physics vol 173, chapter Quantum algorithms: applicable algebra and quantum physics, Springer, pp 96–150

  22. Biham E, Biham O, Biron D, Grassl M, Lidar D (1999) Grover’s quantum search algorithm for arbitrary initial amplitude distribution. Phys Rev A 60:2742–2745

    Article  Google Scholar 

  23. Born M, Fock V (1928) Beweis des Adiabatensatzes. Z Phys 51:165–180

    Article  MATH  Google Scholar 

  24. Boyer M, Brassard GH, Høyer P, Tapp A (1998) Tight bounds on quantum searching. Fortschr Phys 46(4–5):493–505 See also: arXiv preprint quant-ph/9605034

    Article  Google Scholar 

  25. Brassard G, Høyer P (1997) An exact polynomial–time algorithm for Simon’s problem. In: Proceedings of Fifth Israeli Symposium on Theory of Computing and Systems. ISTCS, IEEE Computer Society Press, pp 12–23 See also: arXiv preprint quant-ph/9704027

  26. Brassard G, Høyer P, Mosca M, Tapp A (2000) Quantum amplitude amplification and estimation. arXiv preprint quant-ph/0005055

  27. Brassard G, Høyer P, Tapp A (1997) Quantum algorithm for the collision problem. ACM SIGACT News (Cryptology Column) 28:14–19

    Article  Google Scholar 

  28. Brassard G, Høyer P, Tapp A (1998) Quantum counting. In: International Colloquium on Automata, Languages and Programming (ICALP’98), pp 820–831. See also: arXiv preprint quant-ph/9805082

  29. Brun T, Carteret H, Ambainis A (2003) Quantum random walks with decoherent coins. Phys Rev A 67:032304 See also: arXiv preprint quant-ph/0210180

    Article  MathSciNet  Google Scholar 

  30. Brun T, Carteret H, Ambainis A (2003) The quantum to classical transition for random walks. Phys Rev Lett 91(13):130602 See also: arXiv preprint quant-ph/0208195

    Article  Google Scholar 

  31. Brun T, Carteret H, Ambainis A (2003) Quantum walks driven by many coins. Phys Rev A 67:052317 See also: arXiv preprint quant-ph/0210161

    Article  MathSciNet  Google Scholar 

  32. Buchmann JA, Williams HC (1990) A key exchange system based on real quadratic fields. In: Advances in Crytology – CRYPTO’89, Lecture Notes in Computer Science, vol 435, Springer, pp 335–343

  33. Buhrman H, Cleve R, de Wolf R, Zalka Ch (1999) Bounds for small-error and zero-error quantum algorithms. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’99), IEE Computer Society Press, pp 358–368. See also: arXiv preprint cs.CC/990401

  34. Buhrman H, Dürr C, Heiligman M, Høyer P, Magniez F, Santha M, de Wolf R (2001) Quantum algorithms for element distinctness. In: Conference on Computational Complexity, pp 131–137. See also: arXiv preprint quant-ph/0007016

  35. Cheung D (2004) Improved bounds for the approximate QFT. arXiv preprint quant-ph/0403071

  36. Childs AM, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D.A (2003) Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Symposium on Theory of Computing (STOC’03), pp 59–68

  37. Childs AM, Farhi E, Goldstone J, Gutmann S (2000) Finding cliques by quantum adiabatic evolution. arXiv preprint quant-ph/0012104

  38. Childs AM, Leung DW, Vidal G (2004) Reversible simulation of bipartite product Hamiltonians. IEEE Trans Inform Theory 50(6):1189–1197

    Article  MathSciNet  Google Scholar 

  39. Clausen M, Baum U (1993) Fast Fourier Transforms. BI-Verlag, Mannheim

    MATH  Google Scholar 

  40. Cleve R, Ekert A, Macchiavllo C, Mosca M (1998) Quantum algorithms revisited. Proc R Soc London A 454(1969):339–354. See also: arXiv preprint quant-ph/9708016.

    MATH  Google Scholar 

  41. Cleve R, J Watrous (2000) Fast parallel circuits for the quantum Fourier transform. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’00), IEEE Computer Society Press, pp 526–536. See also: arXiv preprint quant-ph/0006004.

  42. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  MATH  MathSciNet  Google Scholar 

  43. Coppersmith D (1994) An approximate Fourier transform useful in quantum factoring. See also: arXiv preprint quant-ph/0201067

  44. de Beaudrap JN, Cleve R, Watrous J (2002) Sharp quantum versus classical query complexity separations. Algorithmica 34(4):449–461. See also: arXiv preprint quant-ph/0011065.

    Article  MATH  MathSciNet  Google Scholar 

  45. Deutsch D (1985) Quantum theory, the Church–Turing principle and the universal quantum computer. Proc R Soc London A 400:97–117

    MATH  MathSciNet  Google Scholar 

  46. Deutsch D, Jozsa R (1992) Rapid solution of problems by quantum computation. Proc R Soc London A 439:553–558

    MATH  MathSciNet  Google Scholar 

  47. Diaconis P (1988) Group Representations in Probability and Statistics, IMS Lecture Notes – Monograph Series vol 11. Institute of Mathematical Statistics

  48. Dodd JL, Nielsen MA, Bremner MJ, Thew RT (2002) Universal quantum computation and simulation using any entangling Hamiltonian and local unitaries. Phys Rev A 65:040301

    Article  MathSciNet  Google Scholar 

  49. Dürr C, Høyer P (1996) A quantum algorithm for finding the minimum. arXiv preprint quant-ph/9607014

  50. Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of nuclear magnetic resonance in one and two dimension. Clarendon Press, Oxford

    Google Scholar 

  51. Ettinger M (2000) Quantum time-frequency transforms. arXiv preprint quant-ph/0005134

  52. M Ettinger and P Høyer. (1999) On quantum algorithms for noncommutative hidden subgroups. In: Proceedings of the Annual Symposium on Theoretical Aspects of Computer Science (STACS’98), Springer, pp 478–487

    Google Scholar 

  53. Ettinger M, Høyer P, Knill E (2004) The quantum query complexity of the hidden subgroup problem is polynomial. arXiv preprint quant-ph/0401083

  54. Farhi E, Goldstone J, Gutmann S (2000) A numerical study of the performance of a quantum adiabatic evolution algorithm for satisfiability. arXiv preprint quant-ph/0007071

  55. Farhi E, Goldstone J, Gutmann S (2002) Quantum adiabatic evolution algorithm versus simulated annealing. arXiv preprint quant-ph/0201031

  56. Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A, Preda D (2001) A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. arXiv preprint quant-ph/0104129

  57. Farhi E, Goldstone J, Gutmann S, Sipser M (1999) Invariant quantum algorithms for insertion into an ordered list. arXiv preprint quant-ph/9901059

  58. Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computation by adiabatic evolution. arXiv preprint quant-ph/0001106

  59. Farhi E, Gutmann S (1998) Quantum computation and decision trees. Phys Rev A 58:915–928

    Article  MathSciNet  Google Scholar 

  60. Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

    MathSciNet  Google Scholar 

  61. Feynman R (1986) Quantum mechanical computers. Found Phys 16:507–531

    Article  MathSciNet  Google Scholar 

  62. Fijany A, Williams CP (1998) Quantum wavelet transfoms: fast algorithms and complete circuits. In: Proc. NASA conference QCQC 98, Lecture Notes in Computer Science vol 1509, Springer, pp 10–33

  63. Friedl K, Ivanyos G, Magniez F, Santha M, Sen P (2003) Hidden translation and orbit coset in quantum computing. In: Proceedings of the Symposium on Theory of Computing (STOC’03), pp 1–9

  64. Friedl K, Magniez F, Santha M, Sen S (2003) Quantum testers for hidden group properties. In: Mathematical Foundations of Computer Science (MFCS’03), Lecture Notes in Computer Science vol 2747, Springer, pp 419–428

  65. Goldreich O, Goldwasser S (2000) On the limits of nonapproximability of lattice problems. J Comput Syst Sci 60(3):540–563

    Article  MATH  MathSciNet  Google Scholar 

  66. Goldwasser S, Micali S, Rackoff C (1989) The knowledge complexity of interactive proof systems. SIAM J Comput 18(1):186–208

    Article  MATH  MathSciNet  Google Scholar 

  67. Goldwasser S, Sipser M (1989) Private coins versus public coins in interactive proof systems. In: Advances in Computing Research, Randomness and Computation vol 5, JAI Press, pp 73–90

  68. Griffiths R, Niu C (1996) Semiclassical Fourier transform for quantum computation. Phys Rev Lett 76(17):3228–3231

    Article  Google Scholar 

  69. Grigni M, Schulman L, Vazirani M, Vazirani U (2001) Quantum mechanical algorithms for the nonabelian hidden subgroup problem. In: Proceedings of the Symposium on Theory of Computing (STOC’01), pp 68–74

  70. Grover L (1996) A fast quantum mechanical algorithm for database search. In: Proceedings of the Symposium on Theory of Computing (STOC’96), ACM Press, New York, pp 212–219

  71. Grover L (1998) Quantum computers can search rapidly by using almost any transformation. Phys Rev Lett 80:4329–4332

    Article  Google Scholar 

  72. Gruska J (1999) Quantum Computing. McGraw-Hill, London

    Google Scholar 

  73. Hales L, Hallgren S (1999) Quantum Fourier sampling simplified. In: Proceedings of the Symposium on Theory of Computing (STOC’99), pp 330–338. See also: arXiv preprint quant-ph/9812060.

  74. Hales L, Hallgren S (2000) An improved quantum Fourier transform algorithm and applications. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’00), IEEE Computer Society Press, pp 515–525

  75. Hales LR (2002) The quantum Fourier transform and extensions of the abelian hidden subgroup problem. PhD thesis, UC Berkeley. See also: arXiv preprint quant-ph/0212002

  76. Hallgren S (2000) Quantum Fourier sampling, the hidden subgroup problem, beyond. PhD thesis, UC Berkeley

  77. Hallgren S (2002) Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. In: Proceedings of the Symposium on Theory of Computing (STOC’02), pp 653–658

  78. Hallgren S, Moore C, Rötteler M, Russell A, Sen P (2006) Limitations of quantum coset states for graph isomorphism. In: Proceedings of 38th ACM Symposium on Theory of Computing (STOC’06), pp 604–617. See also: arXiv preprints quant-ph/0511148 and quant-ph/0511149

  79. Hallgren S, Russell A, Ta-Shma A (2000) Normal subgroup reconstruction and quantum computation using group representations. In: Proceedings of the Symposium on Theory of Computing (STOC’00), pp 627–635

  80. Hallgren S, Russell A, Ta-Shma A (2003) The hidden subgroup problem and quantum computation using group representations. SIAM J Comput 32(4):916–934

    Article  MATH  MathSciNet  Google Scholar 

  81. Hirvensalo M (2001) Quantum Computing. Springer Verlag, Berlin

    MATH  Google Scholar 

  82. Høyer P (1997) Efficient quantum transforms. arXiv preprint quant-ph/ 9702028, February 1997

  83. Høyer P (2000) Arbitrary phases in quantum amplitude amplification. Phys Rev A 62:052304

    Article  Google Scholar 

  84. Høyer P, Mosca M, De Wolf R (2003) Quantum search on bounded-error inputs. In: International Colloquium on Automata, Languages and Programming (ICALP’03), pp 291–299. See also: arXiv preprint quant-ph/0304052

  85. Hoyer P, Neerbek J, Shi Y (2002) Quantum complexities of ordered searching, sorting, element distinctness. Algorithmica 34(4):429–448. See also: arXiv-preprint quant-ph/0102078

    Article  MathSciNet  Google Scholar 

  86. Ivanyos G, Magniez F, Santha M (2001) Efficient quantum algorithms for some instances of the non-abelian hidden subgroup problem. In: Proceedings of the Symposium on Parallel Algorithms and Architectures (SPAA’01), pp 263–270

  87. James A, Kerber G (1981) The Representation Theory of the Symmetric Group. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  88. Janzing D, Wocjan P, Beth T (2003) Identity check is QMA-complete. arXiv preprint quant-ph/0305050

  89. Jones JA, Knill E (1999) Efficient refocussing of one spin and two spin interactions for NMR quantum computation. J Magn Reson 141:323–325

    Article  Google Scholar 

  90. Jozsa R (1998) Quantum algorithms and the Fourier transform. Proc R Soc London A 454:323–337

    Article  MATH  MathSciNet  Google Scholar 

  91. Jozsa R (2003) Notes on Hallgren’s efficient quantum algorithm for solving Pell’s equation. arXiv preprint quant-ph/0302134

  92. Kato T (1951) On the adiabatic theorem of quantum mechanics. J Phys Soc Japan 5:435–439

    Article  Google Scholar 

  93. Kempe J (2003) Discrete quantum walks hit exponentially faster. In: Proceedings of the Symposium on Approximation, Randomization, and Combinatorial Optimization (RANDOM-APPROX’03). Lecture Notes in Computer Science vol 2764, pp 354–369

  94. Kempe J (2003) Quantum random walks - an introductory overview. Contemp Phys 44(4):307–327

    Article  MathSciNet  Google Scholar 

  95. Kempe J, Kitaev A, Regev O (2004) The complexity of the local Hamiltonian problem. arXiv preprint quant-ph/0406180

  96. Kempe J, Regev O (2003) 3-local Hamiltonian is QMA-complete. Quantum Inf Comput 3(3):258–264. See also: arXiv preprint quant-ph/0302079

    MathSciNet  MATH  Google Scholar 

  97. Kempe J, Shalev A (2003) The hidden subgroups problem and permutation group theory. Manuscript, November 2003

  98. Kitaev A, Watrous J (2000) Parallelization, amplification, exponential time simulation of quantum interactive proof systems. In: Proceedings of the Symposium on Theory of Computing (STOC’00), pp 608–617

  99. Kitaev AY (1996) Quantum measurements and the abelian stabilizer problem. Electronic Colloquium on Computational Complexity (ECCC), 3(3). See also: arXiv preprint quant-ph/9511026.

  100. Kitaev AY (1997) Quantum computations: algorithms and error correction. Russ Math Surv 52(6):1191–1249

    Article  MATH  MathSciNet  Google Scholar 

  101. Kitaev AY, Shen AH, Vyalyi MN (2002) Classical and Quantum Computation, Graduate studies in mathematics vol 47, American Mathematical Society, Providence, Rhode Island

  102. Klappenecker A (1999) Wavelets and wavelet packets on quantum computers. In: Wavelet Applications in Signal and Image Processing VII, pp 703–713. See also: arXiv preprint quant-ph/9909014

  103. Knill E, Laflamme R (2001) Quantum computing and quadratically signed weight enumerators. Inform Process Lett 79:173–179

    Article  MATH  MathSciNet  Google Scholar 

  104. Köbler J, Schöning U, Toran J (1993) The Graph Isomorphism Problem. Birkhäuser, Boston, MA

    MATH  Google Scholar 

  105. Kuperberg G (2003) A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. arXiv preprint quant-ph/0302112

  106. Leung D (2002) Simulation and reversal of n-qubit Hamiltonians using Hadamard matrices. J Mod Opt 49(8):1199–1217

    Article  MATH  Google Scholar 

  107. Lidl R, Niederreiter H (1984) Introduction to Finite Fields and Their Applications, 2nd edition. Addison-Wesley, Reading, MA

    Google Scholar 

  108. Lloyd S (1996) Universal Quantum Simulators. Science 273:1073–1078

    MathSciNet  Google Scholar 

  109. Lo HK, Spiller T, Popescu S (1998) Introduction to Quantum Computation and Information. World Scientific, Singapore

    MATH  Google Scholar 

  110. Lomonaco S (ed) (2002) Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium, Proceedings of Symposia in Applied Mathematics, vol 58 American Mathematical Society

  111. Lund C, Fortnow L, Karloff H, Nisan N (1992) Algebraic methods for interactive proof systems. J ACM 39(4):859–868

    Article  MATH  MathSciNet  Google Scholar 

  112. Magniez F, Santha M, Szegedy M (2003) An O(n1.3) quantum algorithm for the triangle Problem. arXiv preprint quant-ph/0310134

  113. Manin Yu (1980) Computable and uncomputable. Sovetskoye Radio, Moscow

    Google Scholar 

  114. Maslen D, Rockmore D (1995) Generalized FFTs – A survey of some recent results. In: Proceedings of DIMACS Workshop in Groups and Computation, vol 28, pp 182–238

  115. Miller GL (1976) Riemann’s hypothesis and tests for primality. J Comput Syst Sci 13:300–317

    MATH  Google Scholar 

  116. Moore C, Rockmore D, Russell A (2004) Generic quantum Fourier transforms. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pp 778–787. See also: arXiv preprint quant-ph/0304064

  117. Moore C, Rockmore D, Russell A, Schulman L (2004) The power of basis selection in Fourier sampling: hidden subgroup problems in affine groups. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pp 1113–1122. See also: arXiv preprint quant-ph/0211124

  118. Moore C, Russell A (2002) Quantum walks on the hypercube. In: Randomization and Approximation Techniques (RANDOM’02), Lecture Notes in Computer Science vol 2483, pp 164–178

  119. Moore C, Russell A (2005) The symmetric group defies strong Fourier sampling: Part II. arXiv preprint quant-ph/0501066

  120. Moore C, Russell A, Schulman L (2005) The symmetric group defies strong Fourier sampling. In: Proceedings of the 46th Annual IEEE Symposium on the Foundations of Computer Science, pp 479–488. See also: arXiv preprint quant-ph/0501056.

  121. Mosca M (1998) Quantum searching, counting and amplitude amplification by eigenvector analysis. In: Workshop of Mathematical Foundations of Computer Science (MFCS), pp 90–100

  122. Mosca M (1999) Quantum computer algorithms. PhD thesis, University of Oxford

  123. Mosca M, Ekert A (1998) The hidden subgroup problem and eigenvalue estimation on a quantum computer. In: Quantum Computing and Quantum Communications, QCQC’98. Lecture Notes in Computer Science vol 1509 pp 174–188, Springer, Palm Springs

  124. Mosca M, Zalka C (2004) Exact quantum Fourier transforms and discrete logarithm algorithms. Int J Quantum Inf 2(1):91–100. See also: arXiv preprint quant-ph/0301093

    Article  MATH  Google Scholar 

  125. Nayak A, Wu F (1996) The quantum query complexity of approximating the median and related statistics. In: Proceedings of the Symposium on Theory of Computing (STOC’96), pp 384–393

  126. Nielsen M, Chuang I.(2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  127. Nielsen MA, Bremner MJ, Dodd JL, Childs AM, Dawson CM (2002) Universal simulation of Hamiltonian dynamics for quantum systems with finite-dimensional state spaces. Phys Rev A 66:022317

    Article  MathSciNet  Google Scholar 

  128. Pittenger AO (1999) Introduction to Quantum Computing Algorithms. Birkhäuser, Boston

    MATH  Google Scholar 

  129. Preskill J (1997) Fault-tolerant quantum computation. arXiv preprint quant-ph/9712048

  130. Püschel M (2002) Decomposing monomial representations of solvable groups. J Symb Comput 34(6):561–596

    Article  MATH  Google Scholar 

  131. Püschel M, Rötteler M, Beth T (1999) Fast quantum Fourier transforms for a class of non-abelian groups. In: Proceedings Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-13), Lecture Notes in Computer Science vol 1719 pp 148–159, Springer

  132. Raussendorf R, Briegel HJ (2004) A one-way quantum computer. Phys Rev Lett 86(22):5188–5191

    Article  Google Scholar 

  133. Regev O (2002) Quantum computation and lattice problems. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’02), IEEE Computer Society Press, pp 520–529

  134. Rieffel EG, Polak W (1998) An introduction to quantum computing for non-physicists. arXiv preprint quant-ph/9809016

  135. Roland J, Cerf N (2001) Quantum search by local adiabatic evolution. arXiv preprint quant-ph/0107015

  136. Rötteler M, Beth T (1998) Polynomial-time solution to the hidden subgroup problem for a class of non-abelian groups. arXiv preprint quant-ph/9812070

  137. Russell A, Shparlinski I (2004) Classical and quantum function reconstruction via character evaluation. J Complexity 20:404–422

    Article  MATH  MathSciNet  Google Scholar 

  138. Shamir A (1992) IP = PSPACE. J ACM 39(4):869–877

    Article  MATH  MathSciNet  Google Scholar 

  139. Shi Y (2002) Quantum lower bounds for the collision and element distinctness problems. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’02), IEEE Computer Society Press, pp 513–519

  140. Shor PW (1994) Algorithms for quantum computation: discrete logarithm and factoring. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’94), IEEE Computer Society Press, pp 124–134

  141. Shor PW (1997) Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput 26:1484–1509

    Article  MATH  MathSciNet  Google Scholar 

  142. Shor PW (1998) Quantum computing. Documenta Mathematica, Extra vol ICM:467–486

  143. Simon DR (1994) On the power of quantum computation. In: Proceedings of the Symposium on Foundations of Computer Science (FOCS’94), IEEE Computer Society Press, pp 116–123

  144. Slichter CP (1990) Principles of Magnetic Resonance, 3rd edition. Springer, Berlin

    Google Scholar 

  145. Steane A (1998) Quantum computing. Rep Prog Phys 61(2):117–173

    Article  MathSciNet  Google Scholar 

  146. Szegedy M (2004) Quantum speed-up of Markov chain based algorithms. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’04), IEEE Computer Society Press, pp 32–41

  147. Valiant L (2001) Quantum computers that can be simulated classically in polynomial time. In: Proceedings of the Symposium on Theory of Computing (STOC’01), pp 114–123

  148. van Dam W, Hallgren S, Ip L (2003) Quantum algorithms for some hidden shift problems. In: Proceedings of the Symposium on Discrete Algorithms (SODA), pp 489–498. See also: arXiv preprint quant-ph/0211140

  149. van Dam, W, Mosca M, Vazirani U (2001) How powerful is adiabatic quantum computation? In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’01), IEEE Computer Society Press, pp 279–287. See also: arXiv preprint quant-ph/0206003

  150. van Dam W, Seroussi G (2002) Efficient quantum algorithm for estimating Gauss sums. arXiv preprint quant-ph/0207131

  151. Watrous J (1999) PSPACE has constant-round quantum interactive proof systems. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’99), IEEE Computer Society Press, pp 112–119

  152. Watrous J (2000) Succinct quantum proofs for properties of finite groups. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’00), IEEE Computer Society Press, pp 537–546

  153. Watrous J (2001) Quantum algorithms for solvable groups. In: Proceedings of the Symposium on Theory of Computing (STOC’01), pp 60–67

  154. Watrous J (2001) Quantum simulations of classical random walks and undirected graph connectivity. J Comput Syst Sci 62(2):376–391

    Article  MATH  MathSciNet  Google Scholar 

  155. Wocjan P, Rötteler M, Janzing D, Beth T (2002) Simulating Hamiltonians in quantum networks: efficient schemes and complexity bounds. Phys Rev A 65:042309, April 2002. See also arXiv preprint quant-ph/0109088

    Article  Google Scholar 

  156. Wocjan P, Rötteler M, Janzing D, Beth T (2002) Universal simulation of Hamiltonians using a finite set of control operations. Quantum Inf Comput 2(2):133–150 See also arXiv-preprint quant-ph/0109063

    MathSciNet  MATH  Google Scholar 

  157. Yao A (1993) Quantum circuit complexity. In: Proceedings of the Symposium on the Foundations of Computer Science (FOCS’93), IEEE Computer Society Press, pp 352–361

  158. Zalka C (1999) Grover’s quantum searching algorithm is optimal. Phys Rev A 60:2746–2751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rötteler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rötteler, M. Quantum algorithms: A survey of some recent results . Informatik Forsch. Entw. 21, 3–20 (2006). https://doi.org/10.1007/s00450-006-0008-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00450-006-0008-7

Keywords

Navigation