Skip to main content
Log in

Enzyme-based sensing on nanohybrid film coated over FTO electrode for highly sensitive detection of antibiotics

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Cefepime and Meropenem are the new class of antibiotics, which are particularly used as last potent defender or the antibiotics of the last resort against multi-resistant bacterial species. In this paper, an impedance-based electrochemical biosensor was fabricated for identifying antibiotics of last resort in the forensic samples including gastric lavage and other body fluids. The sensor was developed using platinum nanoparticles (PtNPs) and electrodeposited zinc oxide- zinc hexacyanoferrate hybrid film (ZnO/ZnHCF) on the surface of a fluorine-doped glass electrode (FTO). Further, penicillinase was immobilized onto the modified electrode using penicillinase enzyme. The developed biosensor exhibits a good analytical response for the detection of antibiotics evaluated using electrochemistry studies. The linear response of the fabricated electrode was observed from 0.1 to 750 µM and the electrode limit of detection (LOD) was observed as 0.1 µM. The sensor confirms good accuracy, is highly selective, and sensitive for the target. While storing the modified electrode at 4 °C, the stability of biosensor was evaluated for 45 days, and activity loss of 30–40% was observed. The highly sensitive interface of Penicillinase@CHIT/PtNP-ZnO/ZnHCF/FTO electrode shows a promising future in forensic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (2014) Antimicrobial resistance: global report on surveillance. World Health Organization

    Google Scholar 

  2. O’neill J (2014) Antimicrobial resistance. Tackling a crisis for the health and wealth of nations

  3. Caniça M, Manageiro V, Abriouel H, Moran-Gilad J, Franz CM (2019) Antibiotic resistance in foodborne bacteria. Trends Food Sci Technol 84:41–44

    Article  CAS  Google Scholar 

  4. Codjoe FS, Donkor ES (2018) Carbapenem resistance: a review. Med Sci 6:1

    Google Scholar 

  5. Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, Kishony R, Molin S, Tønjum T (2020) Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev 44:171–188

    Article  CAS  PubMed  Google Scholar 

  6. Hernando-Amado S, Coque TM, Baquero F, Martínez JL (2019) Defining and combating antibiotic resistance from one health and global health perspectives. Nat Microbiol 4:1432–1442

    Article  CAS  PubMed  Google Scholar 

  7. Dhingra S, Rahman NA, Peile MR, Sartelli M, Hassali MA, Islam T, Islam S, Haque M (2020) Microbial resistance movements: an overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front Public Health 8:535668

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VH, Takebayashi Y, Spencer J (2019) β-lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol 431:3472–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed 53:8840–8869

    Article  CAS  Google Scholar 

  10. Van Belkum A, Burnham CA, Rossen JW, Mallard F, Rochas O, Dunne WM (2020) Innovative and rapid antimicrobial susceptibility testing systems. Nat Rev Microbiol 18:299–311

    Article  PubMed  CAS  Google Scholar 

  11. Kali A, Bhuvaneshwar PD, Charles MV, Seetha KS (2016) Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. J Basic Clin Pharm 7:93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gefen O, Chekol B, Strahilevitz J, Balaban NQ (2017) TDtest: easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Sci Rep 7:1–9

    Article  CAS  Google Scholar 

  13. da Cunha BR, Fonseca LP, Calado CR (2020) Metabolic fingerprinting with Fourier-transform infrared (FTIR) spectroscopy: towards a high-throughput screening assay for antibiotic discovery and mechanism-of-action elucidation. Metabolites 10:145

    Article  CAS  Google Scholar 

  14. Ducournau A, Bénéjat L, Sifré E, Bessède E, Lehours P, Mégraud F (2016) Helicobacter pylori resistance to antibiotics in 2014 in France detected by phenotypic and genotypic methods. Clin Microbiol Infect 22:715–718

    Article  CAS  PubMed  Google Scholar 

  15. Zeng R, Tao J, Tang D, Knopp D, Shu J, Cao X (2020) Biometric-based tactile chemomechanical transduction: an adaptable strategy for portable bioassay. Nano Energy 71:104580

    Article  CAS  Google Scholar 

  16. Zeng R, Su L, Luo Z, Zhang L, Lu M, Tang D (2018) Ultrasensitive and label-free electrochemical aptasensor of kanamycin coupling with hybridization chain reaction and strand-displacement amplification. Anal Chim Acta 1038:21–28

    Article  CAS  PubMed  Google Scholar 

  17. Zeng R, Zhang L, Luo Z, Tang D (2019) Palindromic fragment-mediated single-chain amplification: an innovative mode for photoelectrochemical bioassay. Anal Chem 91:7835–7841

    Article  CAS  PubMed  Google Scholar 

  18. Zeng R, Luo Z, Su L, Zhang L, Tang D, Niessner R, Knopp D (2019) Palindromic molecular beacon based Z-scheme BiOCl-Au-CdS photoelectrochemical biodetection. Anal Chem 91:2447–2454

    Article  CAS  PubMed  Google Scholar 

  19. Zeng R, Tang Y, Zhang L, Luo Z, Tang D (2018) Dual-readout aptasensing of antibiotic residues based on gold nanocluster-functionalized MnO2 nanosheets with target-induced etching reaction. J Mater Chem B 6:8071–8077

    Article  CAS  PubMed  Google Scholar 

  20. Maity S, Bain D, Patra A (2019) An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. Nanoscale 11:22685–22723

    Article  CAS  PubMed  Google Scholar 

  21. Jain U, Gupta S, Chauhan N (2019) Construction of an amperometric glycated hemoglobin biosensor based on Au–Pt bimetallic nanoparticles and poly (indole-5-carboxylic acid) modified Au electrode. Int J Biol Macromol 105:549–555

    Article  CAS  Google Scholar 

  22. Blanco-López MC, Rivas M (2019) Nanoparticles for bioanalysis. Anal Bioanal Chem 411:1789–1790

    Article  PubMed  CAS  Google Scholar 

  23. Weng X, Cai W, Lan R, Sun Q, Chen Z (2018) Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles. Environ Pollut 236:562–569

    Article  CAS  PubMed  Google Scholar 

  24. Tabrizian P, Ma W, Bakr A, Rahaman MS (2019) pH-sensitive and magnetically separable Fe/Cu bimetallic nanoparticles supported by graphene oxide (GO) for high-efficiency removal of tetracyclines. J Colloid Interface Sci 534:549–562

    Article  CAS  PubMed  Google Scholar 

  25. Wu H, Feng Q, Lu P, Chen M, Yang H (2018) Degradation mechanisms of cefotaxime using biochar supported Co/Fe bimetallic nanoparticles. Environ Sci Water Res Technol 4:964–975

    Article  CAS  Google Scholar 

  26. Zhang Y, Zhang BT, Teng Y, Zhao J, Kuang L, Sun X (2020) Carbon nanofibers supported Co/Ag bimetallic nanoparticles for heterogeneous activation of peroxymonosulfate and efficient oxidation of amoxicillin. J Hazard Mater 400:123290

    Article  CAS  PubMed  Google Scholar 

  27. Kang S, Xia F, Hu Z, Hu W, She Y, Wang L, Fu X, Lu W (2020) Platinum nanoparticles with TiO2–skin as a durable catalyst for photoelectrochemical methanol oxidation and electrochemical oxygen reduction reactions. Electrochim Acta 343:136119

    Article  CAS  Google Scholar 

  28. Košević MG, Zarić MM, Stopić SR, Stevanović JS, Weirich TE, Friedrich BG, Panić VV (2020) Structural and electrochemical properties of nesting and core/shell Pt/TiO2 spherical particles synthesized by ultrasonic spray pyrolysis. Metals 10:11

    Article  CAS  Google Scholar 

  29. Hanada N, Kohase Y, Hori K, Sugime H, Noda S (2020) Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode. Electrochim Acta 341:136027

    Article  CAS  Google Scholar 

  30. Chauhan N, Narang J, Jain U (2015) Highly sensitive and rapid detection of acetylcholine using an ITO plate modified with platinum-graphene nanoparticles. Analyst 140:1988–1994

    Article  CAS  PubMed  Google Scholar 

  31. Ozcelikay G, Kurbanoglu S, Yarman A, Scheller FW, Ozkan SA (2020) Au-Pt nanoparticles based molecularly imprinted nanosensor for electrochemical detection of the lipopeptide antibiotic drug daptomycin. Sensors Actuators B Chem 320:128285

    Article  CAS  Google Scholar 

  32. Zeng R, Luo Z, Zhang L, Tang D (2018) Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal Chem 90:12299–12306

    Article  CAS  PubMed  Google Scholar 

  33. Zeng R, Wang W, Cai G, Huang Z, Tao J, Tang D, Zhu C (2020) Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures. Nano Energy 74:104931

    Article  CAS  Google Scholar 

  34. Yu Z, Cai G, Liu X, Tang D (2020) Platinum nanozyme-triggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor. ACS Appl Mater Interfaces 12:40133–40140

    Article  CAS  PubMed  Google Scholar 

  35. Aydoğdu G, Zeybek DK, Pekyardımcı Ş, Kılıç E (2013) A novel amperometric biosensor based on ZnO nanoparticles-modified carbon paste electrode for determination of glucose in human serum. Artif Cells Nanomed Biotechnol 41:332–338

    Article  PubMed  CAS  Google Scholar 

  36. Al-Mohaimeed AM, Al-Onazi WA, El-Tohamy MF (2020) Utility of zinc oxide nanoparticles catalytic activity in the electrochemical determination of minocycline hydrochloride. Polymers 12:2505

    Article  CAS  PubMed Central  Google Scholar 

  37. Narang J, Chauhan N, Pundir S, Pundir CS (2013) A magnetic nanoparticles-zinc oxide/zinc hexacyanoferrate hybrid film for amperometric determination of tyrosine. Bioprocess Biosyst Eng 36:1545–1554

    Article  CAS  PubMed  Google Scholar 

  38. Jasiecki S, Czupryniak J, Ossowski T, Schroeder G (2013) FTO coated glass electrode functionalization with transition metal cations receptors via electrostatic self-assembly. Int J Electrochem 8:12543–12556

    CAS  Google Scholar 

  39. Chauhan N, Tiwari S, Narayan T, Jain U (2019) Bienzymatic assembly formed@ Pt nano sensing framework detecting acetylcholine in aqueous phase. Appl Surf Sci 474:154–160

    Article  CAS  Google Scholar 

  40. Ghorbani HR, Mehr FP, Pazoki H, Rahmani BM (2015) Synthesis of ZnO nanoparticles by precipitation method. Orient J Chem 31:1219–1221

    Article  CAS  Google Scholar 

  41. Hatada M, Tsugawa W, Kamio E, Loew N, Klonoff DC, Sode K (2017) Development of a screen-printed carbon electrode based disposable enzyme sensor strip for the measurement of glycated albumin. Biosens Bioelectron 88:167–173

    Article  CAS  PubMed  Google Scholar 

  42. Lee CW, Su H, Cai YD, Wu MT, Wu DC, Shiea J (2017) Rapid identification of psychoactive drugs in drained gastric lavage fluid and whole blood specimens of drug overdose patients using ambient mass spectrometry. Mass Spectrom 6:S0056

    Article  Google Scholar 

  43. Jain U, Gupta S, Chauhan N (2017) Detection of glycated hemoglobin with voltammetric sensing amplified by 3D-structured nanocomposites. Int J Biol Macromol 101:896–903

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Extramural Research Grant (File No. EMR/2016/007564) and Young Scientist Scheme (File No. YSS/2015/000023) of Science and Engineering Research Board, Government of India, and Technology Development Program (TDP) (TDP/BDTD/33/2019) of Department of Science and Technology (DST), Government of India and Biotechnology Industry Research Assistance Council (BIRAC) (File No. BT/IIPME0211/02/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utkarsh Jain.

Ethics declarations

Conflict of interest

The authors declare there is no financial or personal conflict of interest that may affect the presented work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, N., Balayan, S., Gupta, S. et al. Enzyme-based sensing on nanohybrid film coated over FTO electrode for highly sensitive detection of antibiotics. Bioprocess Biosyst Eng 44, 2469–2479 (2021). https://doi.org/10.1007/s00449-021-02618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02618-3

Keywords

Navigation