Skip to main content

Advertisement

Log in

Magnetic fields exhibit a positive impact on lipid and biomass yield during phototrophic cultivation of Spirulina sp.

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of magnetic field (MF) application (1, 12 and 24 h day −1) to Spirulina sp. LEB 18 in different photosynthesis cycles (dark and/or light) during short (15 days) and long periods (50 days) of cultivation. MF application was performed via two sources: ferrite magnets and solenoids. At the end of cultivation, the biomass was characterized in terms of lipids, proteins, and carbohydrates. In the 15 day cultures, the highest maximum biomass concentrations (2.06 g L−1 and 1.83 g L−1) were observed when 30 mT was applied for 24 h day −1 or 12 h day −1 (on the light cycle), respectively. MF application throughout cultivation (24 h day −1) for more than 30 days is not recommended. In all conditions, there was an increase in the lipid concentration (from 14 to 45%). The protein profile suggested important changes in photosystems I and II due to MF application. Cell morphology was not altered by MF application. In conclusion, the effects on the metabolism of Spirulina sp. are directly related to the photosynthesis cycle and time period in which the MF was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  2. Costa JAV, Morais MG (2014) An open pond system for microalgal cultivation. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam

  3. Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ (2013) Food commodities from microalgae. Curr Opin Biotech 24:169–177

    Article  CAS  PubMed  Google Scholar 

  4. FDA (2003) GRN 000127. Spirulina, the dried biomass of Arthrospira platensis. http://wayback.archive-it.org/7993/20171031053128/https://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/UCM267267.pdf Accessed 14 Feb 2020

  5. Fox RD (1996) Spirulina: production and potential. Edisud, La Calade

    Google Scholar 

  6. Deamici KM, Cardias BB, Costa JAV, Santos LO (2016) Static magnetic fields in culture of Chlorella fusca: bioeffects on growth and biomass composition. Process Biochem 51:912–916

    Article  CAS  Google Scholar 

  7. Deamici KM, Costa JAV, Santos LO (2016) Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp. Bioresour Technol 220:62–67

    Article  CAS  PubMed  Google Scholar 

  8. Hirano M, Ohta A, Abe K (1998) Magnetic field effects on photosynthesis and growth of the cyanobacterium Spirulina platensis. J Ferment Bioeng 86:313–316

    Article  CAS  Google Scholar 

  9. Bauer LM, Costa JAV, Rosa APC, Santos LO (2017) Growth stimulation and synthesis of lipids, pigments and antioxidants with magnetic fields in Chlorella kessleri cultivations. Bioresour Technol 244:1425–1432

    Article  CAS  PubMed  Google Scholar 

  10. Small DP, Hüner NPA, Wan W (2012) Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics 33:298–308

    Article  CAS  PubMed  Google Scholar 

  11. Katz E, Lioubashevski O, Willner I (2005) Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells. J Am Chem Soc 127:3979–3988

    Article  CAS  PubMed  Google Scholar 

  12. Santos LO, Menestrino B, Deamici K, Rosa AP, Costa JAV (2017) Application of magnetic fields to photobioreactors to improve microalga culture processes. In: Tsang YF (ed) Photobioreactors: advancements, applications and research. Nova Science Publishers

  13. Deamici KM, Santos LO, Costa JAV (2018) Magnetic field action on outdoor and indoor cultures of Spirulina: evaluation of growth, medium consumption and protein profile. Bioresour Technol 249:168–174

    Article  CAS  PubMed  Google Scholar 

  14. Deamici KM, Cuellar-Bermudez SP, Muylaert K, Santos LO, Costa JAV (2019) Quantum yield alterations due to the static magnetic fields action on Arthrospira platensis SAG 21.99: evaluation of photosystem activity. Bioresour Technol 292:121945

    Article  CAS  PubMed  Google Scholar 

  15. Deamici KM, Santos LO, Costa JAV (2019) Use of static magnetic fields to increase CO2 biofixation by the microalga Chlorella fusca. Bioresour Technol 276:103–109

    Article  CAS  PubMed  Google Scholar 

  16. Veiga MC, Fontoura MM, Oliveira MG, Costa JAV, Santos LO (2020) Magnetic fields: biomass potential of Spirulina sp. for food supplement. Bioproc Biosyst Eng 43:1231–1240

    Article  CAS  Google Scholar 

  17. Prates DF, Radmann EM, Duarte JH, Morais MG, Costa JAV (2018) Spirulina cultivated under different light emitting diodes: enhanced cell growth and phycocyanin production. Bioresour Technol 256:38–43

    Article  CAS  PubMed  Google Scholar 

  18. Morais MG, Reichert CC, Dalcanton F, Durante AJ, Marins LF, Costa JAV (2008) Isolation and characterization of a new Arthrospira strain. Zeitschrift für Naturforschung C 63:144

    Article  Google Scholar 

  19. Costa JAV, Colla LM, Filho PD (2003) Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Zeitschrift für Naturforschung C 58:76–80

    Article  CAS  Google Scholar 

  20. Morais MG, Costa JAV (2007) Fotobiorreatores tubulares para a remoção ou fixação de gás carbônico e/ou gases de efeito estufa utilizando microalga(s) e/ou cianobactéria(s). In: INPI (ed). INPI, Brazil.

  21. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  22. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  23. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  CAS  PubMed  Google Scholar 

  24. Lichthenthale H (1987) Chlorophylls end carotenoids: pigments of photosynthetic bio membranes. Method Enzymol 148:350–382

    Article  Google Scholar 

  25. Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  26. Rufino M, Alves RE, Brito ES, Morais SM, Sampaio CdG, Pérez-Jimenez J, Saura-Calixto FD (2007) Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Embrapa Agroindústria Tropical 127:1–4

  27. Miliauskas G, Venskutonis PR, Van Beek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  28. Rufino M (2007) Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre ABTS. Embrapa Agroindústria Tropical. Comunicado técnico 128:1–4

  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  30. Duarte JH, Morais EG, Radmann EM, Costa JAV (2017) Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp. Bioresour Technol 234:472–475

    Article  CAS  PubMed  Google Scholar 

  31. Rosa GM, Moraes L, Souza MRAZ, Costa JAV (2016) Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production. Bioresour Technol 200:528–534

    Article  PubMed  Google Scholar 

  32. Vaz BS, Costa JAV, Morais MG (2016) CO2 biofixation by the cyanobacterium Spirulina sp. LEB 18 and the green alga Chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin. Appl Biochem Biotechnol 178:418–429

    Article  CAS  Google Scholar 

  33. Chibowski E, Hołysz L, Wójcik W (1994) Changes in zeta potential and surface free energy of calcium carbonate due to exposure to radiofrequency electric field. Colloid Surface A 92:79–85

    Article  CAS  Google Scholar 

  34. Zhiyong L, Siyuan G, Lin L, Miaoyan C, Siliang Z (1999) Development of photobioreactor with magnetic-field treatment and its application. Shengwu Wuli Xuebao 15:780–786

    Google Scholar 

  35. Li Z-Y, Guo S-Y, Li L, Cai M-Y (2007) Effects of electromagnetic field on the batch cultivation and nutritional composition of Spirulina platensis in an air-lift photobioreactor. Bioresour Technol 98:700–705

    Article  CAS  PubMed  Google Scholar 

  36. Tu R, Jin W, Xi T, Yang Q, Han S-F, Abomohra AE-F (2015) Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Res 86:132–138

    Article  CAS  PubMed  Google Scholar 

  37. Laramee CB, Frisch P, McLeod K, Li GC (2014) Elevation of heat shock gene expression from static magnetic field exposure in vitro. Bioelectromagnetics 35:406–413

    Article  CAS  PubMed  Google Scholar 

  38. Panagopoulos DJ, Margaritis LH (2010) The identification of an intensity ‘window’ on the bioeffects of mobile telephony radiation. Int J Radiat Biol 86:358–366

    Article  CAS  PubMed  Google Scholar 

  39. Luna LG, Álvarez I, Rivero R (2011) Cultivo de Chlorella vulgaris sobre residual de soja con la aplicación de un campo magnético. Rev Colomb Biotecnol 13:27–38

    CAS  Google Scholar 

  40. Nelson DL, Cox MM (2017) Lehninger principles of biochemistry, 7th edn. Freeman, New York

    Google Scholar 

  41. Koller M, Muhr A, Braunegg G (2014) Microalgae as versatile cellular factories for valued products. Algal Res 6:52–63

    Article  Google Scholar 

  42. Paredes PF (1995) Variabilidad bioquímica de microalgas marinas en cultivo en función de la fuente de nitrógeno. Universidade da Coruña, A Coruna

    Google Scholar 

  43. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  44. Albuquerque WWC, Costa RMPB, Fernandes TdS, Porto ALF (2016) Evidences of the static magnetic field influence on cellular systems. Prog Biophys Mol Biol 121:16–28

    Article  CAS  PubMed  Google Scholar 

  45. Barnes FS, Greenebaum B (2015) The effects of weak magnetic fields on radical pairs. Bioelectromagnetics 36:45–54

    Article  CAS  PubMed  Google Scholar 

  46. Timmel CR, Cintolesi F, Brocklehurst B, Hore PJ (2001) Model calculations of magnetic field effects on the recombination reactions of radicals with anisotropic hyperfine interactions. Chem Phys Lett 334:387–395

    Article  CAS  Google Scholar 

  47. Wang H-Y, Zeng X-B, Guo S-Y, Li Z-T (2008) Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics 29:39–46

    Article  PubMed  Google Scholar 

  48. Esquível MG, Pinto TS, Marín-Navarro J, Moreno J (2006) Substitution of tyrosine residues at the aromatic cluster around the βA−βB loop of rubisco small subunit affects the structural stability of the enzyme and the in vivo degradation under stress conditions. Biochemistry 45:5745–5753

    Article  PubMed  Google Scholar 

  49. Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  PubMed  Google Scholar 

  50. Vierling E, Alberte RS (1983) P700 chlorophyll a-protein. Plant Physiol 72:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) Grant No 485575/2013-2.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, analysis, investigation, writing—original draft, review and editing and visualization were performed by BCM. Writing—review and editing was performed by LS. Supervision and writing—review and editing was performed by JAVC. Methodology, supervision and writing—review and editing were performed by JGB. Conceptualization, writing—review and editing, methodology, supervision, project administration and funding acquisition were performed by LOS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lucielen Oliveira Santos.

Ethics declarations

Conflict of interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa Menestrino, B., Sala, L., Costa, J.A.V. et al. Magnetic fields exhibit a positive impact on lipid and biomass yield during phototrophic cultivation of Spirulina sp.. Bioprocess Biosyst Eng 44, 2087–2097 (2021). https://doi.org/10.1007/s00449-021-02585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02585-9

Keywords

Navigation