Skip to main content
Log in

Evaluation of Syzygium aromaticum aqueous extract as an eco-friendly inhibitor for microbiologically influenced corrosion of carbon steel in oil reservoir environment

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the present investigation, biocorrosion inhibition efficiency of Syzygium aromaticum (clove) aqueous extract on carbon steel in presence of four corrosion causing bacterial strains (Bacillus subtilis, Streptomyces parvus, Pseudomonas stutzeri, and Acinetobacter baumannii) was explored. Weight loss, potentiodynamic polarization, and AC impedance studies were carried out with and without bacterial strains and clove extract. The results obtained from weight loss and AC impedance studies indicate that these corrosion causing bacterial strains accelerated the biocorrosion reaction and biofilm playing a key role in this process. However, the addition of clove extract into the corrosive medium decreased the corrosion current and increased the solution and charge transfer resistance. The significant inhibition efficiency of about 87% was archived in the mixed consortia system with clove extract. The bioactive compounds were playing an important role in the antibacterial activity of the clove extract. It was revealed that clove extract has both biocidal and corrosion inhibition properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Javaherdashti R (2011) Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl Microbiol Biotechnol 91:1507–1517

    CAS  PubMed  Google Scholar 

  2. Kannan P, Su SS, Mannan MS, Castaneda H, Vaddiraju S (2018) A review of characterization and quantification tools for microbiologically influenced corrosion in the oil and gas industry: current and future trends. Ind Eng Chem Res 57:13895–13922

    CAS  Google Scholar 

  3. Wan H, Song D, Zhang D, Du C, Xu D, Liu Z, Ding D, Li X (2018) Corrosion effect of Bacillus cereus on X80 pipeline steel in a Beijing soil environment. Bioelectrochemistry 121:18–26

    CAS  PubMed  Google Scholar 

  4. Jia R, Yang D, Xu D, Gu T (2018) Carbon steel biocorrosion at 80 °C by a thermophilic sulfate reducing archaeon biofilm provides evidence for its utilization of elemental iron as electron donor through extracellular electron transfer. Corros Sci 145:47–54

    CAS  Google Scholar 

  5. Rajasekar A, Babu TG, Pandian SK, Maruthamuthu S, Palaniswamy N, Rajendran A (2007) Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline. Corros Sci 49:2694–2710

    CAS  Google Scholar 

  6. Parthipan P, Narenkumar J, Elumalai P, Preethi PS, Nanthini AUR, Agrawal A, Rajasekar A (2017) Neem extract as a green inhibitor for microbiologically influenced corrosion of carbon steel API 5LX in a hypersaline environments. J Mol Liq 240:121–127

    CAS  Google Scholar 

  7. Kotu SP, Mannan MS, Jayaraman A (2019) Emerging molecular techniques for studying microbial community composition and function in microbiologically influenced corrosion. Int Biodeterior Biodegrad 144:104722

    CAS  Google Scholar 

  8. Elumalai P, AlSalhi MS, Mehariya S, Karthikeyan OP, Devanesan S, Parthipan P, Rajasekar A (2020) Bacterial community analysis of biofilm on API 5LX carbon steel in an oil reservoir environment. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02447-w

    Article  PubMed  Google Scholar 

  9. Tsarenko IV, Makarevich AV, Orekhov DA (1998) Microbicidal properties of polymer films modified by five-membered polynitrogen heterocycles. Bioprocess Eng 19(1998):469–473

    CAS  Google Scholar 

  10. Li E, Wu J, Zhang D, Sun Y, Chen J (2018) D-phenylalanine inhibits the corrosion of Q235 carbon steel caused by Desulfovibrio sp. Int Biodeterior Biodegrad 127:178–184

    CAS  Google Scholar 

  11. Liu H, Xu D, Dao AQ, Zhang G, Lv Y, Liu H (2015) Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris. Corros Sci 101:84–93

    CAS  Google Scholar 

  12. Zhou E, Li H, Yang C, Wang J, Xu D, Zhang D, Gu T (2018) Accelerated corrosion of 2304 duplex stainless steel by marine Pseudomonas aeruginosa biofilm. Int Biodeterior Biodegrad 127:1–9

    CAS  Google Scholar 

  13. Zacheus OM, Lehtola MJ, Korhonen LK, Martikainen PJ (2001) Soft deposits, the key site for microbial growth in drinking water distribution networks. Water Res 35:1757–1765

    CAS  PubMed  Google Scholar 

  14. Parthipan P, Elumalai P, Karthikeyan OP, Ting YP, Rajasekar A (2017) A review on biodegradation of hydrocarbon and their influence on corrosion of carbon steel with special reference to petroleum industry. J Environ Biotech Res 6:12–33

    Google Scholar 

  15. Liduino VS, Cravo-Laureau C, Noel C, Carbon A, Duran R, Lutterbach MT, Servulo EFC (2019) Comparison of flow regimes on biocorrosion of steel pipe weldments: community composition and diversity of biofilms. Int Biodeterior Biodegrad 143:104717

    CAS  Google Scholar 

  16. Liduino VS, Filho JCP, Cravo-Laureau C, Lutterbach MT, SErvulo EFC, (2019) Comparison of flow regimes on biocorrosion of steel pipe weldments: fluid characterization and pitting analysis. Int Biodeterior Biodegrad 144:104750

    CAS  Google Scholar 

  17. Ramalingam V, Dhinesh P, Sundaramahalingam S, Rajaram R (2019) Green fabrication of iron oxide nanoparticles using grey mangrove Avicennia marina for antibiofilm activity and in vitro toxicity. Surf Interf 15:70–77

    CAS  Google Scholar 

  18. Fish KE, Osborn AM, Boxall J (2016) Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems. Environ Sci Water Res Technol 2:614

    Google Scholar 

  19. Parthipan P, Babu TG, Anandkumar B, Rajasekar A (2017) Biocorrosion and its impact on carbon steel API 5LX by Bacillus subtilis A1 and Bacillus cereus A4 isolated from Indian crude oil reservoir. J Bio Tribo Corros 3:32

    Google Scholar 

  20. Xu D, Gu T (2015) The war against problematic biofilms in the oil and gas industry. J Microb Biochem Technol 7:124

    Google Scholar 

  21. Tator KB (2003) In hydrogen sulfide and microbiologically induced corrosion of concrete steel and ductile iron in waste water facilities. Corrosion. NACE International, Texas

    Google Scholar 

  22. Rajasekar A, Anandkumar B, Maruthamuthu S, Ting YP, Rahman PK (2010) Characterization of corrosive bacterial consortia isolated from petroleum product transporting pipelines. Appl Microbiol Biotechnol 85:1175–1188

    CAS  PubMed  Google Scholar 

  23. Cetin D, Aksu ML (2009) Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. Corros Sci 51:1584–1588

    CAS  Google Scholar 

  24. Bsharat TK (1998) Detection, treatment, and prevention of microbiologically influenced corrosion in water-based fire protection systems. National Fire Sprinkler Association

  25. Blanco M, Negro C, Gaspar I, Tijero J (1996) Slime problems in the paper and board industry. Appl Microbiol Biotechnol 46:203–208

    CAS  Google Scholar 

  26. Maruthamuthu S, Nagendran T, Anandkumar B, Karthikeyan M, Palaniswamy N, Narayanan G (2011) Microbiologically influenced corrosion on rail. Curr Sci 100:870–880

    CAS  Google Scholar 

  27. Flitton MKA, Yoder TS (2012) In twelve year study of underground corrosion of activated metals. Corrosion. NACE International, Texas

    Google Scholar 

  28. Jacobson GA (2007) Corrosion at Prudhoe Bay: a lesson on the line. Mater Perform 46(8):26–35

    Google Scholar 

  29. Ismail AS, Farag AA (2020) Experimental, theoretical and simulation studies of extracted crab waste protein as a green polymer inhibitor for carbon steel corrosion in 2 M H3PO4. Surf Interf 19:100483

    CAS  Google Scholar 

  30. Kaskah SE, Pfeiffer M, Klock H, Bergen H, Ehrenhaft G, Ferreira P, Gollnick J, Fischer CB (2017) Surface protection of low carbon steel with N-acyl sarcosine derivatives as green corrosion inhibitors. Surf Interf 9:70–78

    CAS  Google Scholar 

  31. Aktas DF, Sorrell KR, Duncan KE, Wawrik B, Callaghan AV, Suflita JM (2017) Anaerobic hydrocarbon biodegradation and biocorrosion of carbon steel in marine environments: the impact of different ultra low sulfur diesels and bioaugmentation. Int Biodeterior Biodegrad 118:45–56

    CAS  Google Scholar 

  32. Suarez EM, Lepkova L, Kinsella B, Machuca LL (2019) Aggressive corrosion of steel by a thermophilic microbial consortium in the presence and absence of sand. Int Biodeterior Biodegrad 137:137–146

    CAS  Google Scholar 

  33. Ali AI, Mahrous YS (2017) Corrosion inhibition of c-steel in acidic media from fruiting bodies of Melia azedarach L. extract and a synergistic Ni2+ additive. RSC Adv 7:23687

    Google Scholar 

  34. Gadow HS, Motawea MM (2017) Investigation of the corrosion inhibition of carbon steel in hydrochloric acid solution by using ginger roots extract. RSC Adv 7:24576

    CAS  Google Scholar 

  35. Wang O, Tan B, Bao H, Xie Y, Mou Y, Li P, Chen D, Shi Y, Li X, Yang W (2019) Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media. Bioelectrochemistry 128:49–55

    CAS  PubMed  Google Scholar 

  36. Raghavendra N (2018) Areca plant extracts as a green corrosion inhibitor of carbon steel metal in 3 M hydrochloric acid: gasometric, colorimetry and atomic absorption spectroscopy views. J Mol Eng Mater 6:1850004

    CAS  Google Scholar 

  37. Bourazmi H, Tabyaoui M, Hattabi LE, Aoufir YE, Taleb M (2018) Methanolic extract of Salvia officinalis plant as a green inhibitor for the corrosion of carbon steel in 1 M HCl. J Mater Environ Sci 9:928–938

    CAS  Google Scholar 

  38. Abdallah M, Altass HM, Jahdaly BAA, Salem MM (2018) Some natural aqueous extracts of plants as green inhibitor for carbon steel corrosion in 0.5 M sulfuric acid. Green Chem Lett Rev 11:189–196

    CAS  Google Scholar 

  39. Deyab MA, Osman MM, Elkholy AE, Heakal FET (2017) Green approach towards corrosion inhibition of carbon steel in produced oilfield water using lemongrass extract. RSC Adv 7:45241

    CAS  Google Scholar 

  40. He T, Emori W, Zhang R, Okafor PC, Yang M, Cheng C (2019) Detailed characterization of Phellodendron chinense Schneid and its application in the corrosion inhibition of carbon steel in acidic media. Bioelectrochemistry 130:107332

    CAS  PubMed  Google Scholar 

  41. Lekbach Y, Xu D, Abed SE, Dong Y, Liu D, Khan MS, Koraichi SI, Yang K (2018) Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract. Int Biodeterior Biodegrad 133:159–169

    CAS  Google Scholar 

  42. Narenkumar J, Parthipan P, Nanthini AUR, Benelli G, Murugan K, Rajasekar A (2017) Ginger extract as green biocide to control microbial corrosion of mild steel. 3 Biotech 7:133

    PubMed  PubMed Central  Google Scholar 

  43. Bhola SM, Alabbas FM, Bhola R, Spear JR, Mishra B, Olson DL, Kakpovbia AE (2014) Neem extract as an inhibitor for biocorrosion influenced by sulfate reducing bacteria: a preliminary investigation. Eng Fail Anal 36:92–103

    CAS  Google Scholar 

  44. Swaroop BS, Victoria SN, Manivannan R (2016) Azadirachta indica leaves extract as inhibitor for microbial corrosion of copper by Arthrobacter sulfureus in neutral pH conditions—a remedy to blue green water problem. J Taiwan Inst Chem Eng 64:269–278

    CAS  Google Scholar 

  45. Parthipan P, Elumalai P, Narenkumar J, Machuca LL, Murugan K, Karthikeyan OP, Rajasekar A (2018) Allium sativum (garlic extract) as a green corrosion inhibitor with biocidal properties for the control of MIC in carbon steel and stainless steel in oilfield environments. Int Biodeterior Biodegrad 132:66–73

    CAS  Google Scholar 

  46. Djouahra-Fahem D, Angar Y, Gana LM, Khoukhi F, Kebbouche-Gana S (2019) A comprehensive study on crude methanolic extract of Daphne gnidium L. as effective corrosion inhibitors of mild steel induced by SRB consortium. J Bio Tribo Corros 5:18

    Google Scholar 

  47. Cortes-Rojas DF, Fernandes de Souza CR, Oliveira WP (2014) Clove (Syzygium aromaticum): a precious spice. Asian Pac J Trop Biomed 4:90–96

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang YC, Lee SH (2003) Ovicidal and adulticidal effects of Eugenia caryophyllata bud and leaf oil compounds on Pediculus capitis. J Agri Food Chem 51:4884–4888

    CAS  Google Scholar 

  49. Parthipan P, Elumalai P, Ting YP, Rahman PKSM, Rajasekar A (2018) Characterization of hydrocarbon degrading bacteria isolated from Indian crude oil reservoir and their influence on biocorrosion of carbon steel API 5LX. Int Biodeterior Biodegrad 129:67–80

    CAS  Google Scholar 

  50. Rajasekar A, Xiao W, Sethuraman M, Parthipan P, Elumalai P (2017) Airborne microorganisms associated with corrosion of structural engineering materials. Environ Sci Pollut Res 24:8120–8136

    CAS  Google Scholar 

  51. Mohammed KAK, Abdulkadhim HM, Noori SI (2016) Chemical composition and anti-bacterial effects of clove (Syzygium aromaticum) flowers. Int J Curr Microbiol App Sci 5:483–489

    Google Scholar 

  52. Chowdhry BZ, Ryall JP, Dines TJ, Mendham AP (2015) Infrared and raman spectroscopy of eugenol, isoeugenol, and methyl eugenol: conformational analysis and vibrational assignments from density functional theory calculations of the anharmonic fundamentals. J Phys Chem A 119:11280–11292

    CAS  PubMed  Google Scholar 

  53. Hemalatha R, Nivetha P, Mohanapriya C, Sharmila G, Muthukumaran C, Gopinath M (2016) Phytochemical composition, GC-MS analysis, in vitro antioxidant and antibacterial potential of clove flower bud (Eugenia caryophyllus) methanolic extract. J Food Sci Technol 53:1189–1198

    CAS  PubMed  Google Scholar 

  54. Saxena A, Sharma A, Saxena D, Jain P (2012) Corrosion inhibition and adsorption behavior of clove oil on iron in acidic medium. E J Chem 9:2044–2051

    CAS  Google Scholar 

  55. Azzouyahar E, Abu-Obaid A, Hajji ME, Bazzi L, Belkhaouda M, Lamiri A, Salghi R, Jodeh S, Essahli M (2016) Plants extract as green corrosion inhibitors: the case of eugenol from clove. Der Pharm Chem 8:467–475

    CAS  Google Scholar 

  56. Lekbach Y, Li Z, Xu D, Abed SE, Dong Y, Liu D, Gu T, Koraichi SI, Yang K, Wang F (2019) Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm. Bioelectrochemistry 128:193–203

    CAS  PubMed  Google Scholar 

  57. Jia R, Yang D, Rahman HBA, Gu T (2017) Laboratory testing of enhanced biocide mitigation of an oilfield biofilm and its microbiologically influenced corrosion of carbon steel in the presence of oilfield chemicals. Int Biodeterior Biodegrad 125:116–124

    CAS  Google Scholar 

  58. Narenkumar J, Parthipan P, Madhavan J, Murugan K, Marpu SB, Suresh AK, Rajasekar A (2018) Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. Environ Sci Pollut Res 25:5412–5420

    CAS  Google Scholar 

  59. Parthipan P, Sabarinathan D, Angaiah S, Rajasekar A (2018) Glycolipid biosurfactant as an eco-friendly microbial inhibitor for the corrosion of carbon steel in vulnerable corrosive bacterial strains. J Mol Liq 261:473–479

    CAS  Google Scholar 

  60. Zhai X, Myamina M, Duan J, Hou B (2013) Microbial corrosion resistance of galvanized coatings with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one as a biocidal ingredient in electrolytes. Corro Sci 72:99–107

    CAS  Google Scholar 

  61. Rajasekar A, Babu TG, Pandian STK, Maruthamuthu S, Palaniswamy N, Rajendran A (2007) Role of Serratia marcescens ACE2 on diesel degradation and its influence on corrosion. J Ind Microbiol Biotechnol 34:589–598

    CAS  PubMed  Google Scholar 

  62. Li H, Yang C, Zhou E, Yang C, Feng H, Jiang Z, Xu D, Gu T, Yang K (2017) Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm. J Mater Sci Technol 33:1596–1603

    CAS  Google Scholar 

  63. Li Y, Xu D, Chen C, Li X, Jia R, Zhang D, Sand W, Wang F, Gu T (2018) Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J Mater Sci Technol 34:1713–1718

    Google Scholar 

Download references

Acknowledgments

Dr. P. Parthipan, gratefully acknowledges the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), for providing research fellowship under National Postdoctoral Fellowship (PDF/2017/001134). Also, authors are grateful to the researchers supporting project number (RSP-2020/68), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Punniyakotti Parthipan, Mohamad S. AlSalhi or Aruliah Rajasekar.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthipan, P., AlSalhi, M.S., Devanesan, S. et al. Evaluation of Syzygium aromaticum aqueous extract as an eco-friendly inhibitor for microbiologically influenced corrosion of carbon steel in oil reservoir environment. Bioprocess Biosyst Eng 44, 1441–1452 (2021). https://doi.org/10.1007/s00449-021-02524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02524-8

Keywords

Navigation