Skip to main content
Log in

Reaction coupling separation for isosteviol production from stevioside catalyzed by acidic ion-exchange resin

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Isosteviol, a prodrug used to be obtained via Wagner–Meerwein rearrangement from steviol with low yield and long reaction time. Herein, an in-situ separation-coupling-reaction is presented to prepare isosteviol from the natural sweetener stevioside. Simply with in-situ water-washing, the product containing 92.98% purity of isosteviol was obtained with a stevioside conversion of 97.23% from a packet bed reactor without further separation. Within the assayed inorganic acid, organic acids and acidic ionic liquids, the acidic ion-exchange resins provided higher product specificity towards isosteviol. Furthermore, comparing to 5-Fluorouracil, the product presented similar and even stronger inhibition on proliferation of the assayed human cancer cells in a time and dose-dependence by causing cell phase arrest. Isosteviol treatment caused G1 arrest on SGC-7901, HCT-8 and HCT-116 cells, S arrest on HepG2, Huh-7 and HepG3B cells, and G2 arrest on MGC-803 cells, respectively.

Graphic abstract

Reaction coupling separation for isosteviol production catalyzed by acidic ion-exchange resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dolder F, Lichti H, Mosettig E, Quitt P (1960) The Structure and Stereochemistry of Steviol and Isosteviol. J Am Chem Soc 82:246–247

    Article  CAS  Google Scholar 

  2. Mosettig E, Beglinger U, Dolder F, Lichti H, Quitt P, Waters JA (1963) The absolute configuration of steviol and isosteviol. J Am Chem Soc 85:2305–2309

    Article  CAS  Google Scholar 

  3. Sharipova RR, Andreeva OV, Garifullin BF, Strobykina IY, Strobykina AS, Voloshina AD, Kravchenko MA, Kataev VE (2018) Synthesis and antimicrobial and antituberculosis activity of the first conjugates of the diterpenoid isosteviol and D-arabinofuranose. Chem Nat Compd 54:92–97

    Article  CAS  Google Scholar 

  4. Liu Y, Wang TT, Ling Y, Bao N, Shi W, Chen L, Sun JB (2017) Design, synthesis and cytotoxic evaluation of nitric oxide-releasing derivatives of isosteviol. Chem Biol Drug Des 90:473–477

    Article  CAS  Google Scholar 

  5. Luan T, Cao LH, Deng H, Shen QK, Tian YS, Quan ZS (2019) Design and synthesis of C-19 isosteviol derivatives as potent and highly selective antiproliferative agents. Molecules 24:121

    Article  Google Scholar 

  6. Ullah A, Munir S, Mabkhot Y, Badshah SL (2019) Bioactivity profile of the diterpene isosteviol and its derivatives. Molecules 24:678

    Article  CAS  Google Scholar 

  7. Garifullin BF, Strobykina IY, Khabibulina LR, Sapunova AS, Voloshina AD, Sharipova RR, Khairutdinov BI, Zuev YF, Kataev VE (2019) Synthesis and cytotoxicity of the conjugates of diterpenoid isosteviol and N-acetyl-D-glucosamine. Nat Prod Res. https://doi.org/10.1080/14786419.2019.1650355

    Article  PubMed  Google Scholar 

  8. Liu CJ, Zhang T, Yu SL, Dai XJ, Wu Y, Tao JC (2017) Synthesis, cytotoxic activity, and 2D-and 3D-QSAR studies of 19-carboxyl-modified novel isosteviol derivatives as potential anticancer agents. Chem Biol Drug Des 89:870–887

    Article  CAS  Google Scholar 

  9. Malki A, El-Sharkawy A, El Syaed M, Bergmeier S (2017) Antitumor activities of the novel isosteviol derivative 10C against liver cancer. Anticancer Res 37:1591–1601

    Article  CAS  Google Scholar 

  10. Meninno S (2019) Valorization of waste: sustainable organocatalysts from renewable resources. Chemsuschem. https://doi.org/10.1002/cssc.201902500

    Article  PubMed  Google Scholar 

  11. Mathur S, Bulchandani N, Parihar S, Shekhawat GS (2017) Critical review on steviol glycosides: Pharmacological, toxicological and therapeutic aspects of high potency zero caloric sweetener. Int J Pharmacol 13:916–928

    Article  CAS  Google Scholar 

  12. Ruiz-Ruiz JC, Moguel-Ordonez YB, Segura-Campos MR (2017) Biological activity of Stevia rebaudiana Bertoni and their relationship to health. Crit Rev Food Sci 57:2680–2690

    Article  CAS  Google Scholar 

  13. Carrera-Lanestosa A, Moguel-Ordonez Y, Segura-Campos M (2017) Stevia rebaudiana Bertoni: a natural alternative for treating diseases associated with metabolic syndrome. J Med Food 20:933–943

    Article  CAS  Google Scholar 

  14. Zhang H, Sun X, Xie Y, Tian F, Hu H, Tan W (2018) Isosteviol sodium inhibits astrogliosis after cerebral ischemia/ reperfusion injury in rats. Biol Pharm Bull 41:575–584

    Article  CAS  Google Scholar 

  15. Avent AG, Hanson JR, Hitchcock PB, De Oliveira BH (1990) The influence of a 15-hydroxy group on the rearrangement reactions of steviol and its 16,17-epoxide. J Chem Soc Perkin Trans 1:2661–2665

    Article  Google Scholar 

  16. Khaibullin RN, Strobykina IY, Kataev VE, Lodochnikova OA, Gubaidullin AT, Musin RZ (2009) New synthesis of diterpenoid (16S)-dihydrosteviol. Russ J Gen Chem 79:967–971

    Article  CAS  Google Scholar 

  17. Li HP, Dong CM, Hou YM, Liu HM (2009) Synthesis of 17-OH-Isosteviol. Chem Res Chin Univ 25:116–117

    CAS  Google Scholar 

  18. Lohoelter C, Weckbecker M, Waldvogel SR (2013) (–)-Isosteviol as a versatile ex-chiral-pool building block for organic chemistry. Eur J. Org Chem 2013:5539–5554

    Article  CAS  Google Scholar 

  19. Perera WH, Docampo ML, Wiggers FT, Hufford CD, Fronczek FR, Avula B, Khan IA, McChesney JD (2018) Endocyclic double bond isomers and by-products from rebaudioside A and stevioside formed under acid conditions. Phytochem Lett 25:163–170

    Article  CAS  Google Scholar 

  20. Wan HD, He GZ, Zhang HJ (2019) Isosteviol preparation and inclusion complexation of it with -cyclodextrin. J Incl Phenom Macro 94:65–73

    Article  CAS  Google Scholar 

  21. Cherney EC, Green JC, Baran PS (2013) Synthesis of ent-kaurane and beyerane diterpenoids by controlled fragmentations of overbred intermediates. Angew Chem Int Ed 52:9019–9022

    Article  CAS  Google Scholar 

  22. Milagre HMS, Martins LR, Takahashi JA (2009) Novel agents for enzymatic and fungal hydrolysis of stevioside. Brazilian Journal of Microbiology 40:367–372

    Article  CAS  Google Scholar 

  23. Víctor-Ortega MD, Ochando-Pulido JM, Martínez-Ferez A (2016) Iron removal and reuse from Fenton-like pretreated olive mill wastewater with novel strong-acid cation exchange resin fixed-bed column. J Ind Eng Chem 36:298–305

    Article  Google Scholar 

  24. Chen JM, Xia YM, Wan HD, Wang HJ, Liu X (2014) A complete specific cleavage of glucosyl and ester linkages of stevioside for preparing steviol with a β-galactosidase from Sulfolobus solfataricus. J Mol Catal B Enzym 105:126–131

    Article  CAS  Google Scholar 

  25. Chen JM, Ding L, Sui XC, Xia YM, Wan HD, Lu T (2016) Production of a bioactive sweetener steviolbioside via specific hydrolyzing ester linkage of stevioside with a beta-galactosidase. Food Chem 196:155–160

    Article  CAS  Google Scholar 

  26. Chen J-M, Zhang J, Xia Y-M, Wang X-X, Li J (2018) The natural sweetener metabolite steviol inhibits the proliferation of human osteosarcoma U2OS cell line. Oncol Lett 15:5250–5256

    PubMed  PubMed Central  Google Scholar 

  27. Ye J, Pei X, Cui H, Yu Z, Lee H, Wang J, Wang X, Sun L, He H, Yang VC (2018) Cellular uptake mechanism and comparative in vitro cytotoxicity studies of monomeric LMWP-siRNA conjugate. J Ind Eng Chem 63:103–111

    Article  CAS  Google Scholar 

  28. Oliveira BH, Strapasson RA (1996) Biotransformation of isosteviol by Fusarium verticilloides. Phytochemistry 43:393–395

    Article  Google Scholar 

  29. Strobykina IY, Belenok MG, Semenova MN, Semenov VV, Babaev VM, Rizvanov IK, Mironov VF, Kataev VE (2015) Triphenylphosphonium cations of the diterpenoid isosteviol: synthesis and antimitotic activity in a sea urchin embryo model. J Nat Prod 78:1300–1308

    Article  CAS  Google Scholar 

  30. Mizushina Y, Akihisa T, Ukiya M, Hamasaki Y, Murakami-Nakai C, Kuriyama I, Takeuchi T, Sugawara F, Yoshida H (2005) Structural analysis of isosteviol and related compounds as DNA polymerase and DNA topoisomerase inhibitors. Life Sci 77:2127–2140

    Article  CAS  Google Scholar 

  31. Momtazi-Borojeni AA, Esmaeili SA, Abdollahi E, Sahebkar A (2017) A review on the pharmacology and toxicology of steviol glycosides extracted from stevia rebaudiana. Curr Pharm Design 23:1616–1622

    Article  CAS  Google Scholar 

  32. Takasaki M, Konoshima T, Kozuka M, Tokuda H, Takayasu J, Nishino H, Miyakoshi M, Mizutani K, Lee KH (2009) Cancer preventive agents. Part 8: chemopreventive effects of stevioside and related compounds. Bioorgan Med Chem 17:600–605

    Article  CAS  Google Scholar 

  33. Bazotte RB, Lonardoni MTC, Alvarez M, Gaeti WP, Amado CAB (1986) Determination of the lethal dose (LD50) for the lethal isosteviol in laboratory animals. Dev Med Child Neurol 18:103–116

    Google Scholar 

  34. Yoshikawa R, Kusunoki M, Yanagi H, Noda M, Furuyama J-i, Yamamura T, Hashimoto-Tamaoki T (2001) Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: a novel target mechanism concept for pharmacokinetic modulating chemotherapy. Can Res 61:1029–1037

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (31772017, 31371837), the national first-class discipline program of Light Industry Technology and Engineering (LITE2018-03), and the project of outstanding scientific & technological innovation group of Jiangsu Province are gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmei Xia.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhou, Z., Zhang, Z. et al. Reaction coupling separation for isosteviol production from stevioside catalyzed by acidic ion-exchange resin. Bioprocess Biosyst Eng 44, 151–159 (2021). https://doi.org/10.1007/s00449-020-02431-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02431-4

Keywords

Navigation