Skip to main content

Advertisement

Log in

The mixed culture of microalgae Chlorella pyrenoidosa and yeast Yarrowia lipolytica for microbial biomass production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Microbial biomass which mostly generated from the microbial processes of bacteria, yeasts, and microalgae is an important resource. Recent concerns in microbial biomass production field, especially microbial lipid production for biofuel, have been focused towards the mixed culture of microalgae and yeast. To more comprehensive understanding of the mixed culture for microbial biomass, mono Chlorella pyrenoidosa, mono Yarrowia lipolytica and the mixed culture were investigated in the present work. Results showed that the mixed culture achieved significantly faster cell propagation of microalga and yeast, smaller individual cell size of yeast and higher relative chlorophyll content of microalga. The mixed culture facilitated the assimilation of carbon and nitrogen and drove the carbon flow to carbohydrate. Besides higher lipid yield (0.77 g/L), higher yields of carbohydrates (1.82 g/L), protein (1.99 g/L) and heating value (114.64 kJ/L) indicated the microbial biomass harvested from the mixed culture have more potential utilization in renewable energy, feedstuff, and chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guccione A, Biondi N, Sampietro G, Rodolfi L, Bassi N, Tredici MR (2014) Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor. Biotechnol Biofuels 7:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ledesma-Amaro R, Nicaud JM (2016) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog Lipid Res 61:40–50

    Article  CAS  PubMed  Google Scholar 

  3. Rywinska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Tomaszewska L, Rymowicz W (2013) Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenerg 48:148–166

    Article  CAS  Google Scholar 

  4. Rywinska A, Rymowicz W, Zarowska B, Skrzypinski A (2010) Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica. World J Microbiol Biotechnol 26(7):1217–1224

    Article  CAS  PubMed  Google Scholar 

  5. Barth G, Gaillardin C (1997) Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19(4):219–237

    Article  CAS  PubMed  Google Scholar 

  6. Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N Biotechnol 28(4):362–368

    Article  CAS  PubMed  Google Scholar 

  7. Cheirsilp B, Kitcha S, Torpee S (2012) Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Ann Microbiol 62(3):987–993

    Article  CAS  Google Scholar 

  8. Xue F, Miao J, Zhang X, Tan T (2010) A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol 160(2):498–503

    Article  CAS  PubMed  Google Scholar 

  9. Ling J, Nip S, Cheok WL, de Toledo RA, Shim H (2014) Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater. Bioresour Technol 173:132–139

    Article  CAS  PubMed  Google Scholar 

  10. Santos CA, Ferreira ME, da Silva TL, Gouveia L, Novais JM, Reis A (2011) A symbiotic gas exchange between bioreactors enhances microalgal biomass and lipid productivities: taking advantage of complementary nutritional modes. J Ind Microbiol Biotechnol 38(8):909–917

    Article  CAS  PubMed  Google Scholar 

  11. Yen HW, Chen PW, Chen LJ (2015) The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol 184:148–152

    Article  CAS  PubMed  Google Scholar 

  12. Budhi S, Mukarakate C, Iisa K, Pylypenko S, Ciesielski PN, Yung MM, Donohoe BS, Katahira R, Nimlos MR, Trewyn BG (2015) Molybdenum incorporated mesoporous silica catalyst for production of biofuels and value-added chemicals via catalytic fast pyrolysis. Green Chem 17(5):3035–3046

    Article  CAS  Google Scholar 

  13. Zhang Z, Ji H, Gong G, Zhang X, Tan T (2014) Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Bioresour Technol 164:93–99

    Article  CAS  PubMed  Google Scholar 

  14. Tzur A, Moore JK, Jorgensen P, Shapiro HM, Kirschner MW (2011) Optimizing optical flow cytometry for cell volume-based sorting and analysis. PloS One 6:1

    Article  CAS  Google Scholar 

  15. Borcier E, Morvezen R, Boudry P, Miner P, Charrier G, Laroche J, Hegaret H (2017) Effects of bioactive extracellular compounds and paralytic shellfish toxins produced by Alexandrium minutum on growth and behaviour of juvenile great scallops Pecten maximus. Aquat Toxicol 184:142–154

    Article  CAS  PubMed  Google Scholar 

  16. Spagnolo F (1953) Spectrophotometric determination of glycerol as sodium-cupri-glycerol complex. AnaCh 25(10):1566–1568

    CAS  Google Scholar 

  17. Nielsen SS (2010) Phenol-sulfuric acid method for total carbohydrates. Springer, New York

    Book  Google Scholar 

  18. Qin L, Shu Q, Wang Z, Shang C, Zhu S, Xu J, Li R, Zhu L, Yuan Z (2014) Cultivation of Chlorella vulgaris in dairy wastewater pretreated by UV irradiation and sodium hypochlorite. Appl Biochem Biotechnol 172(2):1121–1130

    Article  CAS  PubMed  Google Scholar 

  19. Higgs RJ, Chase LE, Ross DA, Van Amburgh ME (2015) Updating the Cornell Net Carbohydrate and Protein System feed library and analyzing model sensitivity to feed inputs. J Dairy Sci 98(9):6340–6360

    Article  CAS  PubMed  Google Scholar 

  20. Friedl A, Padouvas E, Rotter H, Varmuza K (2005) Prediction of heating values of biomass fuel from elemental composition. Anal Chim Acta 544(1–2):191–198

    Article  CAS  Google Scholar 

  21. Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms—a review. Soil Biol Biochem 42(12):2058–2067

    Article  CAS  Google Scholar 

  22. Qin L, Wei D, Wang Z, Alam MA (2018) Advantage Assessment of mixed culture of Chlorella vulgaris and Yarrowia lipolytica for treatment of liquid digestate of yeast industry and cogeneration of biofuel feedstock. Appl Biochem Biotechnol 187(3):856–869

    Article  CAS  PubMed  Google Scholar 

  23. Qin L, Liu L, Wang Z, Chen W, Wei D (2018) Efficient resource recycling from liquid digestate by microalgae-yeast mixed culture and the assessment of key gene transcription related to nitrogen assimilation in microalgae. Bioresour Technol 264:90–97

    Article  CAS  PubMed  Google Scholar 

  24. Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. ApEn 88(10):3389–3401

    CAS  Google Scholar 

  25. Vachova L, Palkova Z (2005) Physiological regulation of yeast cell death in multicellular colonies is triggered by ammonia. J Cell Biol 169(5):711–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramanna L, Guldhe A, Rawat I, Bux F (2014) The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol 168:127–135

    Article  CAS  PubMed  Google Scholar 

  27. Addy MM, Kabir F, Zhang R, Lu Q, Deng X, Current D, Griffith R, Ma Y, Zhou W, Chen P, Ruan R (2017) Co-cultivation of microalgae in aquaponic systems. Bioresour Technol 245:27–34

    Article  CAS  PubMed  Google Scholar 

  28. Rai MP, Nigam S, Sharma R (2013) Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenerg 58:251–257

    Article  CAS  Google Scholar 

  29. Collier JL (2010) Flow cytometry and the single cell in phycology. J Phycol 36(4):628–644

    Article  Google Scholar 

  30. Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14(23):R1014–R1027

    Article  CAS  PubMed  Google Scholar 

  31. Johnston GC, Singer RA, Mcfarlane S (1977) Growth and cell division during nitrogen starvation of the yeast Saccharomyces cerevisiae. J Bacteriol 132(2):723

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lopes M, Gomes N, Goncalves C, Coelho MAZ, Mota M, Belo I (2008) Yarrowia lipolytica lipase production enhanced by increased air pressure. Lett Appl Microbiol 46(2):255–260

    Article  CAS  PubMed  Google Scholar 

  33. Lee K, Lee CG (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol Bioproc Eng 6(3):194–199

    Article  CAS  Google Scholar 

  34. Giordano M, Bowes G (1997) Gas exchange and C allocation in Dunaliella salina cells in response to the N source and CO2 concentration used for growth. Plant Physiol 115(3):1049–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev 50:431–444

    Article  CAS  Google Scholar 

  36. Benvenuti G, Bosma R, Cuaresma M, Janssen M, Barbosa MJ, Wijffels RH (2015) Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J Appl Phycol 27(4):1–7

    Article  CAS  Google Scholar 

  37. Shtaida N, Khozingoldberg I, Boussiba S (2015) The role of pyruvate hub enzymes in supplying carbon precursors for fatty acid synthesis in photosynthetic microalgae. PsynR 125(3):407–422

    CAS  Google Scholar 

  38. Streb S, Zeeman SC (2012) Starch metabolism in Arabidopsis. Arabidopsis Book 10(e0160):e0160

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lu L, Chen J, Lim PE, Dong W (2018) Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production. J Appl Phycol 30(6):1–11

    Google Scholar 

  40. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Sciences and Technology of Guangzhou [Grant no. 201704030084], the National Natural Science Foundation of China [Grant no. 21606230], the Natural Science Foundation for research team of Guangdong Province [Grant no. 2016A030312007], and the National Key Research and Development Program-China [Grant no. 2016YFB0601004]. The authors are grateful to Mohammad Asraful Alam for his kind help in English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Liu, L., Wang, Z. et al. The mixed culture of microalgae Chlorella pyrenoidosa and yeast Yarrowia lipolytica for microbial biomass production. Bioprocess Biosyst Eng 42, 1409–1419 (2019). https://doi.org/10.1007/s00449-019-02138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02138-1

Keywords

Navigation