Skip to main content
Log in

High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Acetoin is one of the bio-based platform chemicals and its optically pure isomers are important potential intermediates and precursors in the synthesis of novel optically active materials. (3R)-acetoin could be synthesized via enzymatic catalysis, whole-cell catalysis and fermentation. In this study a marine strain of Bacillus subtilis was isolated to produce optically pure (3R)-acetoin with glucose as carbon source. The effects of nutrients on the formation of (3R)-acetoin and conversion of glucose to (3R)-acetoin were evaluated by Plackett–Burman design, and the fermentation medium was optimized by central composite design. The impact of oxygen supply on the production of (3R)-acetoin was studied at different aeration rates. Under the optimal conditions, 83.7 g/L (3R)-acetoin with an optical purity of 99.4% was achieved by fed-batch fermentation, and the conversion of glucose to (3R)-acetoin was 91.5% of the theoretical value. The results indicate the industrial potential of this strain for (3R)-acetoin production via fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Xiao Z, Lu JR (2014) Generation of acetoin and its derivatives in foods. J Agric Food Chem 62:6487–6497

    Article  CAS  PubMed  Google Scholar 

  2. Xiao Z, Lu JR (2014) Strategies for enhancing fermentative production of acetoin: a review. Biotechnol Adv 32:492–503

    Article  CAS  PubMed  Google Scholar 

  3. Zhu C, Shen T, Liu D, Wu J, Chen Y, Wang L, Guo K, Ying H, Ouyang P (2016) Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose. Green Chem 18:2165–2174

    Article  CAS  Google Scholar 

  4. Tolasch T, Sölter S, Tóth M, Ruther J, Francke W (2003) (R)-Acetoin-female sex pheromone of the summer chafer Amphimallon solstitiale (L.). J Chem Ecol 29(4):1045–1050

    Article  CAS  PubMed  Google Scholar 

  5. Kochius S, Paetzold M, Scholz A, Merkens H, Vogel A, Ansorge-Schumacher M, Hollmann F, Schrader J, Holtmann D (2014) Enantioselective enzymatic synthesis of the α-hydroxy ketone (R)-acetoin from meso-2,3-butanediol. J Mol Catal B Enzym 103:61–66

    Article  CAS  Google Scholar 

  6. Guo Z, Zhao X, He Y, Yang T, Gao H, Li G, Chen F, Sun M, Lee J-K, Zhang L (2017) Efficient (3R)-acetoin production from meso-2,3-butanediol using a new whole-cell biocatalyst with co-expression of meso-2,3-butanediol dehydrogenase, NADH oxidase, and Vitreoscilla hemoglobin. J Microbiol Biotechnol 27(1):92–100

    Article  CAS  PubMed  Google Scholar 

  7. Xiao Z, Lv C, Gao C, Qin J, Ma C, Liu Z, Liu P, Li L, Xu P (2010) A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals. PLoS One 5(1):e8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai J-Y, Cheng L, He Q-F, Xiu Z-L (2015) High acetoin production by a newly isolated marine Bacillus subtilis strain with low requirement of oxygen supply. Process Biochem 50(11):1730–1734

    Article  CAS  Google Scholar 

  9. Zhang Y, Li S, Liu L, Wu J (2013) Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresour Technol 130:256–260

    Article  CAS  PubMed  Google Scholar 

  10. Xiao Z, Gu R, Hou X, Zhao J-y, Zhu H, Lu JR (2017) Non-sterilized fermentative production of acetoin with 2,3-butanediol as a main byproduct from maize hydrolysate by a newly isolated thermophilic Bacillus strain. J Chem Technol Biotechnol 92:2845–2852

    Article  CAS  Google Scholar 

  11. Roncal T, Caballero S, Guereñu MdMDd, Rincón I, Prieto-Fernández S, Ochoa-Gómez JR (2017) Efficient production of acetoin by fermentation using the newly isolated mutant strain Lactococcus lactis subsp. lactis CML B4. Process Biochem 58:35–41

    Article  CAS  Google Scholar 

  12. Sun J-A, Zhang L-Y, Rao B, Shen Y-L, Wei D-Z (2012) Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase. Bioresour Technol 119:94–98

    Article  CAS  PubMed  Google Scholar 

  13. Xu Q, Xie L, Li Y, Lin H, Sun S, Guan X, Hu K, Shenb Y, Zhang L (2015) Metabolic engineering of Escherichia coli for efficient production of (3R)-acetoin. J Chem Technol Biotechnol 90:93–100

    Article  CAS  Google Scholar 

  14. Wang D, Zhou J, Chen C, Wei D, Shi J, Jiang B, Liu P, Hao J (2015) R-acetoin accumulation and dissimilation in Klebsiella pneumoniae. J Ind Microbiol Biotechnol 42:1105–1115

    Article  CAS  PubMed  Google Scholar 

  15. Dai J-Y, Ma L-H, Wang Z-F, Guan W-T, Xiu Z-L (2017) Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation. Bioprocess Biosyst Eng 40:423–429

    Article  CAS  PubMed  Google Scholar 

  16. Zhang L, Chen S, Xie H, Tian Y, Hu K (2012) Efficient acetoin production by optimization of medium components and oxygen supply control using a newly isolated Paenibacillus polymyxa CS107. J Chem Technol Biotechnol 87:1551–1557

    Article  CAS  Google Scholar 

  17. Yang T-W, Rao Z-M, Zhang X, Xu M-J, Xu Z-H, Yang S-T (2013) Effects of corn steep liquor on production of 2,3-butanediol and acetoin by Bacillus subtilis. Process Biochem 48:1610–1617

    Article  CAS  Google Scholar 

  18. Liu Y, Zhang S, Yong Y-C, Ji Z, Ma X, Xu Z, Chen S (2011) Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem 46:390–394

    Article  CAS  Google Scholar 

  19. Sommer B, Moeller HV, Haack M, Qoura F, Langner C, Bourenkov G, Garbe D, Loll B, Brück T (2015) Detailed structure—function correlations of Bacillus subtilis aetolactate synthase. Chembiochem 16(1):110–118

    Article  CAS  PubMed  Google Scholar 

  20. Guo Y, Pan D, Ding H, Zhen WU, Sun Y, Zeng X (2015) Purification and characterization of α-acetolactate decarboxylase (ALDC) from newly isolated Lactococcus lactis DX. J Sci Food Agric 95:1655–1661

    Article  CAS  PubMed  Google Scholar 

  21. Ji F, Li M, Feng Y, Wu S, Wang T, Pu Z, Wang J, Yang Y, Xue S, Bao Y (2018) Structural and enzymatic characterization of acetolactate decarboxylase from Bacillus subtilis. Appl Microbiol Biotechnol 102:6479–6491

    Article  CAS  PubMed  Google Scholar 

  22. Zhang X, Bao T, Rao Z, Yang T, Xu Z, Yang S, Li H (2014) Two-stage pH control strategy based on the pH preference of acetoin reductase regulates acetoin and 2,3-butanediol distribution in Bacillus subtilis. PLoS One 9(3):e91187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang L, Xu Q, Zhan S, Li Y, Lin H, Sun S, Sha L, Hu K, Guan X, Shen Y (2014) A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30. Appl Microbiol Biotechnol 98:1175–1184

    Article  CAS  PubMed  Google Scholar 

  24. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27(6):715–725

    Article  CAS  PubMed  Google Scholar 

  25. Tian Y, Fan Y, Liu J, Zhao X, Chen W (2016) Effect of nitrogen, carbon sources and agitation speed on acetoin production of Bacillus subtilis SF4-3. Electron J Biotechn 19:41–49

    Article  CAS  Google Scholar 

  26. Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L (2000) Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 182(16):4458–4465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reents H, Munch R, Dammeyer T, Jahn D, Hartig E (2006) The FNR regulon of Bacillus subtilis. J Bacteriol 188(3):1103–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mao Y, Fu J, Tao R, Huang C, Wang Z, Tang Y-J, Chen T, Zhao X (2017) Systematic metabolic engineering of Corynebacterium glutamicum for the industrial level production of optically pure D-(−)-acetoin. Green Chem 19:5691–5702

    Article  CAS  Google Scholar 

  29. Hao W, Ji F, Wang J, Zhang Y, Wang T, Bao Y (2014) Biochemical characterization of unusual meso-2,3-butanediol dehydrogenase from a strain of Bacillus subtilis. J Mol Catal B Enzym 109:184–190

    Article  CAS  Google Scholar 

  30. Luo Q, Wu J, Wu M (2014) Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochem 49:1223–1230

    Article  CAS  Google Scholar 

  31. Li L, Wei X, Yu W, Wen Z, Chen S (2017) Enhancement of acetoin production from Bacillus licheniformis by 2,3-butanediol conversion strategy: metabolic engineering and fermentation control. Process Biochem 57:35–42

    Article  CAS  Google Scholar 

  32. Kandasamy V, Liu J, Dantoft SH, Solem C, Jensen PR (2016) Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis. Sci Rep 6:36769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 21476042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Long Xiu.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Wang, Z. & Xiu, ZL. High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141. Bioprocess Biosyst Eng 42, 475–483 (2019). https://doi.org/10.1007/s00449-018-2051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2051-8

Keywords

Navigation