Skip to main content
Log in

Performance of Bacillus subtilis on fibrous biomass sugar hydrolysates in producing biosurfactants and techno-economic comparison

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Surfactin and fatty acetyl glutamate (FA-Glu) were produced by Bacillus subtilis in 5-L fermentor. In a previous 50-mL shake flask study, sugar hydrolysates from soy hull, alfalfa and switchgrass were shown to support the growth of Bacillus strains. It was observed that glucose content and availability of hexose and pentose sugars in the hydrolysates played an important role in determining growth and product concentration. Growth, economic efficiency and product concentration of biosurfactants was compared in fermentations conducted in 5-L stirred tank bioreactor, on biomass hydrolysate-based growth media. Highest bacterial growth absorbance for surfactin and FA-Glu producing strains were at 3.5 and 3.3 absorbance units, respectively, for switchgrass hydrolysate media. Highest concentrations of products were observed in soy hull hydrolysate media (2.9 g/L and 0.28 g/L for surfactin and FA-Glu). Techno-economic analysis of the 5-L fermentations on the three biomasses showed surfactin cost estimate to be $6.63/kg for 97% pure product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Panjiar N, Sachan SG, Sachan A, Biosurfactants (2017) A multifunctional microbial metabolite. In: Kalia V (ed) Microbial applications, vol 2. Springer, Cham, pp 213–229

    Chapter  Google Scholar 

  2. Ishigami Y, Osman M, Nakahara H, Sano Y, Ishiguro R, Matsumoto M (1995) Significance of β-sheet formation for micellization and surface adsorption of surfactin. Colloids Surf B 4:341–348

    Article  CAS  Google Scholar 

  3. Reznik GO, Vishwanath P, Pynn MA, Sitnik JM, Todd JJ, Wu J, Jiang Y, Keenan BG, Castle AB, Haskell RF, Smith TF, Somasundaran P, Jarrell KA (2010) Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Biotechnol 86:1387

    Article  CAS  PubMed  Google Scholar 

  4. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  PubMed  PubMed Central  Google Scholar 

  5. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Winkler MA (1990) Chemical engineering problems in biotechnology. Springer Science & Business Media, New York

    Google Scholar 

  7. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  8. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory, Golden

    Google Scholar 

  9. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  10. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. Laboratory Analytical Procedure (LAP), National Renewable Energy Laboratory, Golden

    Google Scholar 

  11. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843. https://doi.org/10.1126/science.1246843

    Article  CAS  PubMed  Google Scholar 

  12. Hu W, Dang Q, Rover M, Brown RC, Wright MM (2016) Comparative techno-economic analysis of advanced biofuels, biochemicals, and hydrocarbon chemicals via the fast pyrolysis platform. Biofuels 6:57–67

    Article  Google Scholar 

  13. Choi J, Lee S (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioprocess Eng 17:335

    Article  CAS  Google Scholar 

  14. Peters MS, Timmerhaus KD, West RE (2003) Plant design and economics for chemical engineers. McGraw-Hill Education, New York

    Google Scholar 

  15. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2010) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, Golden

    Google Scholar 

  16. Humbird D, Davis R, Tao L, Kinchin C, Hsu D, Aden A, Schoen P, Lukas J, Olthof B, Worley M, Sexton D, Dudgeon D (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. National Renewable Energy Laboratory, Golden

    Google Scholar 

  17. Sharma R, Lamsal BP, Colonna WJ (2016) Pretreatment of fibrous biomass and growth of biosurfactant-producing Bacillus subtilis on biomass-derived fermentable sugars. Bioprocess Biosyst Eng 39:105

    Article  CAS  PubMed  Google Scholar 

  18. Ibrahim MHA, Steinbüchel A (2010) Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly(3-hydroxybutyrate) production from glycerol. J Appl Microbiol 108:214–225

    Article  CAS  PubMed  Google Scholar 

  19. Marti ME, Colonna WJ, Reznik G, Pynn M, Jarrell K, Lamsal B, Glatz CE (2015) Production of fatty-acyl-glutamate biosurfactant by Bacillus subtilis on soybean co-products. Biochem Eng J 95:48–55

    Article  CAS  Google Scholar 

  20. Khan AW, Rahman MS, Zohora US, Okanami M, Ano T (2011) Production of surfactin using pentose carbohydrate by Bacillus subtilis. J Environ Sci 23:S63–S65

    Article  Google Scholar 

  21. Park YC, Jun SY, Seo JH (2012) Construction and characterization of recombinant Bacillus subtilis JY123 able to transport xylose efficiently. J Biotechnol 161:402–406

    Article  CAS  PubMed  Google Scholar 

  22. De vuyst LUC, Vandamme EJ (1992) Influence of the carbon source on nisin production in Lactococcus lactis subsp. lactis batch fermentations. Microbiology 138:571–578

    Google Scholar 

  23. Lengeler JW, Drews G, Schlegel HG (1999) Biology of the prokaryotes. Blackwell, New York

    Google Scholar 

  24. Stulke J, Hillen W (2000) Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54:849–880

    Article  CAS  PubMed  Google Scholar 

  25. Surfactin cost in Sigma Aldrich. http://www.sigmaaldrich.com/catalog/product/sigma/s3523?lang=en&region=US. Accessed 10 Apr 2018

  26. Ashby RD, McAloon AJ, Solaiman DKY et al (2013) J Surfactant Deterg 16:683

    Article  CAS  Google Scholar 

  27. Lang S, Wullbrandt D (1999) Rhamnose lipids—biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buddhi P. Lamsal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Lamsal, B.P. & Mba-Wright, M. Performance of Bacillus subtilis on fibrous biomass sugar hydrolysates in producing biosurfactants and techno-economic comparison. Bioprocess Biosyst Eng 41, 1817–1826 (2018). https://doi.org/10.1007/s00449-018-2004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-2004-2

Keywords

Navigation