Skip to main content

Advertisement

Log in

Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Production of carotenoids by Rhodococcus opacus PD630 is reported. A modified mineral salt medium formulated with glycerol as an inexpensive carbon source was used for the fermentation. Ammonium acetate was the nitrogen source. A dry cell mass concentration of nearly 5.4 g/L could be produced in shake flasks with a carotenoid concentration of 0.54 mg/L. In batch culture in a 5 L bioreactor, without pH control, the maximum dry biomass concentration was ~30 % lower than in shake flasks and the carotenoids concentration was 0.09 mg/L. Both the biomass concentration and the carotenoids concentration could be raised using a fed-batch operation with a feed mixture of ammonium acetate and acetic acid. With this strategy, the final biomass concentration was 8.2 g/L and the carotenoids concentration was 0.20 mg/L in a 10-day fermentation. A control of pH proved to be unnecessary for maximizing the production of carotenoids in this fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luo H, Niu Y, Duan C, Su H, Yan G (2013) A pH control strategy for increased β-carotene production during batch fermentation by recombinant industrial wine yeast. Process Biochem 48:195–200

    Article  CAS  Google Scholar 

  2. Mantzouridou F, Roukas T, Achatz B (2005) Effect of oxygen transfer rate on β-carotene production from synthetic medium by Blakeslea trispora in shake flask culture. Enzyme Microb Technol 37:687–694

    Article  CAS  Google Scholar 

  3. Wang B, Lin L, Lu L, Chen W (2012) Optimization of β-carotene production by a newly isolated Serratia marcescens strain. Electron J Biotechnol 15(6). doi:10.2225/vol15-issue6-fulltext-4

  4. Yoon SH, Lee SH, Das A, Ryu HK, Jang HJ, Kim JY, Oh DK, Keasling JD, Kim SW (2009) Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J Biotechnol 140:218–226

    Article  CAS  Google Scholar 

  5. Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12

    Article  Google Scholar 

  6. Chang J-J, Thia C, Lin H-Y, Liu H-L, Ho F-J, Wu J-T, Shih M-C, Li W-H, Huang C-C (2015) Integrating an algal β-carotene hydroxylase gene into a designed carotenoid-biosynthesis pathway increases carotenoid production in yeast. Bioresour Technol 184:2–8

    Article  CAS  Google Scholar 

  7. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207–216

    Article  CAS  Google Scholar 

  8. Zeb A, Murkovic M (2013) Determination of thermal oxidation and oxidation products of β-carotene in corn oil triacylglycerols. Food Res Int 50:534–544

    Article  CAS  Google Scholar 

  9. Borowitzka MA (2013) Dunaliella: Biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, New York, pp 359–368

    Chapter  Google Scholar 

  10. Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  Google Scholar 

  11. Urbano SB, Di Capua C, Cortez N, Farías ME, Alvarez HM (2014) Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism. Extremophiles 18:375–384

    Article  CAS  Google Scholar 

  12. Nanou K, Roukas T (2011) Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium. Bioresour Technol 102:8159–8164

    Article  CAS  Google Scholar 

  13. Wältermann M, Luftmann H, Baumeister D, Kalscheuer R, Steinbüchel A (2000) Rhodococcus opacus strain PD630 as a new source of high-value single cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology 146:1143–1149

    Article  Google Scholar 

  14. Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid body formation in bacteria: how bacteria fatten up. Mol Microbiol 55:750–763

    Article  Google Scholar 

  15. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  Google Scholar 

  16. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  17. Atlas RM (2010) Handbook of microbiological media, 4th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  18. Sinprasertchok C (2013) Statistical optimization of Rhodococcus opacus PD630 cultivation: Microbial oil for biodiesel production. Doctor of Engineering (Chemical Engineering) Thesis, Kasetsart University, Thailand

  19. Sinprasertchok C, Thanapimmetha A, Saisriyoot M, Srinophakun P (2011) Preliminary investigation of biodiesel wastes utilization in bacterial fermentation. Thai J Agri Sci 44(5):67–70

    Google Scholar 

  20. Nguyen AQ, Kim YG, Kim SB, Kim CJ (2013) Improved tolerance of recombinant Escherichia coli to the toxicity of crude glycerol by overexpressing trehalose biosynthetic genes (otsBA) for the production of β-carotene. Bioresour Technol 143:531–537

    Article  CAS  Google Scholar 

  21. de Carvalho LMJ, Gomes PB, Godoy RLO, Pacheco S, do Monte PHF, de Carvalho JLV, Nutti MR, Nevesa ACL, Vieira ACRA, Ramos SRR (2012) Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): a preliminary study. Food Res Int 47:337–340

    Article  Google Scholar 

  22. Meléndez-Martínez AJ, Britton G, Vicario IM, Heredia FJ (2007) Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem 101:1145–1150

    Article  Google Scholar 

  23. Kurosawa K, Radek A, Plassmeier JK, Sinskey AJ (2015) Improved glycerol utilization by a triacylglycerol producing Rhodococcus opacus strain for renewable fuels. Biotechnol Biofuels 8:31

    Article  Google Scholar 

  24. Venkataramanan KP, Boatman JJ, Kurniawan Y, Taconi KA, Bothun GD, Scholz C (2012) Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013. Appl Microbiol Biotechnol 93:1325–1335

    Article  CAS  Google Scholar 

  25. Su H, Liu L, Wang S, Wang Q, Jiang Y, Hou X, Tan T (2015) Semi-continuous anaerobic digestion for biogas production: influence of ammonium acetate supplement and structure of the microbial community. Biotechnol Biofuels 8:13

    Article  Google Scholar 

  26. Carrau F, Medina K, Farina L, Boido E, Dellacassa E (2010) Effect of Saccharomyces cerevisiae inoculum size on wine fermentation aroma compounds and its relation with assimilable nitrogen content. Int J Food Microbiol 143:81–85

    Article  CAS  Google Scholar 

  27. Ding M-Z, Tian H-C, Cheng J-S, Yuan Y-J (2009) Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. J Biotechnol 144:279–286

    Article  CAS  Google Scholar 

  28. Aldarf M, Amrane A, Prigent Y (2002) Carbon and nitrogen substrates consumption, ammonia release and proton transfer in relation with growth of Geotrichum candidum and Penicillium camemberti on a solid medium. J Biotechnol 95:99–108

    Article  CAS  Google Scholar 

  29. Sarkar A (2009) Plant stem cells. Discovery Publishing House, Darya Ganj, New Delhi

    Google Scholar 

  30. Blume H-P, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke BM (2015) Scheffer/schachtschabel soil science. Springer, Berlin

    Google Scholar 

  31. Pisal DS, Lele SS (2005) Carotenoid production from microalga, Dunaliella salina. Indian J Biotechnol 4:476–483

    CAS  Google Scholar 

  32. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  Google Scholar 

  33. Alvarez HM (2003) Relationship between β-oxidation pathway and the hydrocarbon-degrading profile in actinomycetes bacteria. Int Biodeter Biodegr 52:35–42

    Article  CAS  Google Scholar 

  34. Ichiyama S, Shimokata K, Tsukamura M (1989) Carotenoid pigments of genus Rhodococcus. Microbiol Immunol 33:503–508

    Article  CAS  Google Scholar 

  35. Zheng YT, Toyofuku M, Nomura N, Shigeto S (2013) Correlation of carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74. Anal Chem 85:7295–7301

    Article  CAS  Google Scholar 

  36. Zhang D, Li L, Zhu S, Zhang N, Yang J, Ma X, Chen J (2015) Complete genome sequence of Rhodococcus sp. B7740, a carotenoid-producing bacterium isolated from the Arctic sea. Genome Announc 3(2):e00333–e00415

    Google Scholar 

  37. Tao L, Cheng Q (2004) Novel β-carotene ketolases from non-photosynthetic bacteria for canthaxanthin synthesis. Mol Gen Genom 272:530–537

    Article  CAS  Google Scholar 

  38. Yaganza E-S, Tweddell RJ, Arul J (2009) Physicochemical basis for the inhibitory effects of organic and inorganic salts on the growth of Pectobacterium carotovorum subsp. Carotovorum and Pectobacterium atrosepticum. Appl Environ Microbiol 75:1465–1469

    Article  CAS  Google Scholar 

  39. Scherer P, Lippert H, Wolff G (1983) Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biol Trace Elem Res 5:149–163

    Article  CAS  Google Scholar 

  40. Szymanowska-Powałowska D (2015) The effect of high concentrations of glycerol on the growth, metabolism and adaptation capacity of Clostridium butyricum DSP1. Electron J Biotechnol 18:128–133

    Article  Google Scholar 

  41. Janßen HJ, Ibrahim MHI, Bröker D, Steinbüchel A (2013) Optimization of macroelement concentrations, pH and osmolarity for triacylglycerol accumulation in Rhodococcus opacus strain PD630. AMB Express 3:38

    Article  Google Scholar 

  42. Skandamis PM, Stopforth JD, Kendall PA, Belk KE, Scanga JA, Smith GC, Sofos JN (2007) Modeling the effect of inoculum size and acid adaptation on growth/no growth interface of Escherichia coli O157:H7. Int J Food Microbiol 120:237–249

    Article  CAS  Google Scholar 

  43. Kamble AL, Meena VS, Banerjee UC (2010) Effect of agitation and aeration on the production of nitrile hydratase by Rhodococcus erythropolis MTCC 1526 in a stirred tank reactor. Lett Appl Microbiol 51:413–420

    Article  CAS  Google Scholar 

  44. Garcia-Ochoa F, Escobar S, Gomez E (2015) Specific oxygen uptake rate as indicator of cell response of Rhodococcus erythropolis cultures to shear effects. Chem Eng Sci 122:491–499

    Article  CAS  Google Scholar 

  45. Hu Z-C, Zheng Y-G, Wang Z, Shen Y-C (2006) pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme Microb Technol 39:586–590

    Article  CAS  Google Scholar 

  46. Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50

    Article  CAS  Google Scholar 

  47. Ahmed F, Fanning K, Netzel M, Turner W, Li Y, Schenk PM (2014) Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem 165:300–306

    Article  CAS  Google Scholar 

  48. Malisorn C, Suntornsuk W (2009) Improved β-carotene production of Rhodotorula glutinis in fermented radish brine by continuous cultivation. Biochem Eng J 43:27–32

    Article  CAS  Google Scholar 

  49. Nanou K, Roukas T, Papadakis E (2012) Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor. Biochem Eng J 67:203–207

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of the following is gratefully acknowledged: the graduate scholarship program of the Faculty of Engineering, Kasetsart University; the Bioprocess Engineering Laboratory (BEL), Department of Chemical Engineering, Kasetsart University; and the Graduate School, Kasetsart University, Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penjit Srinophakun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanapimmetha, A., Suwaleerat, T., Saisriyoot, M. et al. Production of carotenoids and lipids by Rhodococcus opacus PD630 in batch and fed-batch culture. Bioprocess Biosyst Eng 40, 133–143 (2017). https://doi.org/10.1007/s00449-016-1681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1681-y

Keywords

Navigation