Skip to main content
Log in

Influence of oxygen transfer on Pseudomonas putida effects on growth rate and biodesulfurization capacity

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The growth rate and desulfurization capacity accumulated by the cells during the growth of Pseudomonas putida KTH2 under different oxygen transfer conditions in a stirred and sparged tank bioreactor have been studied. Hydrodynamic conditions were changed using different agitation conditions. During the culture, several magnitudes associated to growth, such as the specific growth rate, the dissolved oxygen concentration and the carbon source consumption have been measured. Experimental results indicate that cultures are influenced by the fluid dynamic conditions into the bioreactor. An increase in the stirrer speed from 400 to 700 rpm has a positive influence on the cell growth rate. Nevertheless, the increase of agitation from 700 to 2000 rpm hardly has any influence on the growth rate. The effect of fluid dynamics on the cells development of the biodesulfurization (BDS) capacity of the cells during growth is different. The activities of the intracellular enzymes involved in the 4S pathway change with dissolved oxygen concentration. The enzyme activities have been evaluated in cells at several growth time and different hydrodynamic conditions. An increase of the agitation from 100 to 300 rpm has a positive influence on the development of the overall BDS capacity of the cells during growth. This capacity shows a decrease for higher stirrer speeds and the activity of the enzymes monooxygenases DszC and DszA decreases dramatically. The highest value of the activity of DszB enzyme was obtained with cells cultured at 100 rpm, while this activity decreases when the stirrer speed was increased higher than this value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a j :

Activity of enzyme j \( \left( \rm{\mu M \ g_{{C_{X} }}^{ - 1} \ min^{ - 1} } \right) \)

BDS:

Biodesulfurisation

C* :

Oxygen concentration in equilibrium (mol L−1)

Cj :

Concentration of compound j \( \left( \rm{\mu M \ L^{ - 1} } \right) \)

CO2 :

Oxygen dissolved concentration (% or mol·m−3)

C X :

Concentration of biomass \( \left( {g_{X} \cdot L^{ - 1} } \right) \)

D:

Stirrer diameter (m)

DBT:

Dibenzothiophene

DBTO:

Dibenzothiophene sulfoxide

DBTO2 :

Dibenzothiophene-sulfone

F:

Fischer statistical parameter

HBP:

2-Hydroxybiphenyl

HBPS:

2-Hydroxybiphenyl-2-sulfinic acid

k L a :

Volumetric oxygen mass transfer coefficient (s−1)

N:

Stirrer speed (rpm)

OTR:

Oxygen transfer rate (mol O2L−1s−1)

OUR:

Oxygen uptake rate (mol O2L−1s−1)

Re :

Impeller Reynolds number (–)

SSR:

Sum of square residuals

T :

Vessel diameter (m)

t :

Time (min, s or h)

V :

Volume (m3)

Xj :

Conversion or yield of compound j (–)

η :

Effectiveness factor for growth (–)

µ :

Specific growth rate (h−1)

G :

Relative to gas phase

L :

Relative to liquid phase

Max:

Referred to maximum value

O2 :

Referred to oxygen

X :

Referred to biomass

0:

Referred to initial value

t :

Referred to time of 120 min of resting cell assay

0:

Referred to initial value

References

  1. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  Google Scholar 

  2. Märkl H, Bronnenmeier R, Wittek B (1991) The resistance of microorganisms to hydrodynamic stress. Int Chem Eng. 31:185–197

    Google Scholar 

  3. Sahoo S, Verma RK, Suresh AK, Rao KK, Bellare J, Suraishkumar GK (2003) Macro-level and genetic-level responses of bacillus subtilis to shear stress. Biotechnol Prog 19:1689–1696

    Article  CAS  Google Scholar 

  4. Chisty Y (2010). In: M.C. Flickinger (ed) Shear Sensitivity in Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. John Wiley & Sons, New York

  5. Hodaifa G, Martinez ME, Orpez R, Sanchez S (2010) Influence of hydrodynamic stress in the growth of Scenedesmus obliquus using a culture medium based on olive mill waste water. Chem Eng Process 49:1161–1168

    Article  CAS  Google Scholar 

  6. Calik P, Yilgör P, Ayhan P, Demir A (2004) Oxygen transfer effects on recombinant benzaldehyde lyase production. Chem Eng Sci 59:5075–5083

    Article  CAS  Google Scholar 

  7. Olmos E, Mehmood N, Haj-Husein L, Goergen JL, Fick M, Delaunay S (2013) Effects of bioreactor hydrodynamics on the physiology of Streptomyces. Bioprocess Biosyst Eng 36:259–272

    Article  CAS  Google Scholar 

  8. Prokop A, Bajpai RK (1992) The sensitivity of biocatalysts to hydrodynamic shear stress. Adv Appl Microbiol 37:165–232

    Article  CAS  Google Scholar 

  9. Hewitt CJ, Boon LA, McFarlane CM, Nienow AW (1998) The use of flow cytometry to study the impact of fluid mechanical stress on Escherichia coli W3110 during continuous cultivation in an agitated bioreactor. Biotechnol Bioeng 59:612–620

    Article  CAS  Google Scholar 

  10. Meijer JJ, ten Hoopen HJG, van Gameren YM, Luyben KChAM, Libbenga KR (1994) Effects of hydrodynamic stress on the growth of plant cells in batch and continuous culture. Enz Microb Technol 16:467–477

    Article  CAS  Google Scholar 

  11. Yepez BO, Maugeri F (2005) Agitation, aeration and shear stress as key factors in inulinase production by Kluyveromyces marxianus. Enz Microb Technol 36:717–724

    Article  Google Scholar 

  12. Garcia-Ochoa F, Gomez E, Alcon A, Santos VE (2013) The effect of hydrodynamic stress on the growth of Xanthomonas campestris cultures in a stirred and sparged tank bioreactor. Bioprocess Biosyst Eng 36:911–925

    Article  CAS  Google Scholar 

  13. Kao P-M, Chen C-I, Huang S-C, Chang Y-C, Tsay P-Y, Liu Y-C (2007) Effects of shear stress and mass transfer on chitinase production by Paenibacillus sp. CHE-N1. Biochem Eng J 34:172–178

    Article  CAS  Google Scholar 

  14. Arnaud JP, Lacroix C, Foussereau C, Choplin L (1993) Shear stress effects on growth and activity of Lactobacillus delbrueckii subsp. Bulgaricus. J Biotechnol 29:157–175

    Article  CAS  Google Scholar 

  15. Bronnenmeier R, Markl H (1982) Hydrodynamic stress capacity of microorganisms. Biotech Bioeng 24:553–578

    Article  CAS  Google Scholar 

  16. Denome SA, Olson ES, Young KD (1993) Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl Environ Microbiol 59:2837–2843

    CAS  Google Scholar 

  17. McFarland BL (1999) Biodesulfurization. Curr Opin Microbiol 2:257–264

    Article  CAS  Google Scholar 

  18. Maghsoudi S, Vossoughi M, Kheirolomoom A, Tanaka E, Katoh S (2001) Biodesulfurization of hydrocarbons and diesel fuels by Rhodococcus sp. strain P32C1. Biochem Eng J 8:151–156

    Article  CAS  Google Scholar 

  19. Martin AB, Alcon A, Santos VE, Garcia-Ochoa F (2004) Production of a biocatalyst of Pseudomonas putida CECT5279 for dibenzothiophene (DBT) biodesulfurization for different media compositions. Energy Fuels 18:851–857

    Article  CAS  Google Scholar 

  20. Martin AB, Alcon A, Santos VE, Garcia-Ochoa F (2005) Production of a biocatalyst of Pseudomonas putida CECT5279 for DBT biodesulfurization: influence of the operational conditions. Energy Fuels 19:775–782

    Article  CAS  Google Scholar 

  21. Alcon A, Santos VE, Martin AB, Yustos P, Garcia-Ochoa F (2005) Biodesulfurization of DBT with Pseudomonas putida CECT5279 by resting cells: influence of cell growth time on reducing equivalent concentration and HpaC activity. Biochem Eng J 26:168–175

    Article  CAS  Google Scholar 

  22. Alcon A, Martin AB, Santos VE, Gomez E, Garcia-Ochoa F (2008) Kinetic model for DBT desulphurization by resting whole cells of Pseudomonas putida CECT5279. Biochem Eng J 39:486–495

    Article  CAS  Google Scholar 

  23. Gomez E, Santos V, Alcon A, Martin AB, Garcia-Ochoa F (2006) Oxygen-uptake and mass-transfer rates on the growth of Pseudomonas putida CECT5279: influence on biodesulfurization (BDS) capability. Energy Fuels 20:1565–1571

    Article  CAS  Google Scholar 

  24. Gomez E, Alcon A, Escobar S, Santos VE, Garcia-Ochoa F (2015) Effect of fluid dynamic conditions on growth rate and biodesulfurization capacity of Rhodococcus erythropolis IGTS8. Biochem Eng J 99:138–146

    Article  CAS  Google Scholar 

  25. Oldfield C, Pogrebinsky O, Simmonds J, Olson ES, Kulpa CH (1997) Elucidation of the metabolic pathway for dibenzothiophene desulfurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143:2961–2973

    Article  CAS  Google Scholar 

  26. Galan B, Diaz E, Garcia JL (2000) Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ Microbiol 2:687–694

    Article  CAS  Google Scholar 

  27. Galan B, Diaz E, Fernandez A, Prieto MA, Garcia JL, Garcia-Ochoa F, Garcia Calvo E (2001) Method for desulfurization of dibenzothiophene using a recombinant Pseudomonas putida strains as biocatalyst. International Patent WO 01/70996 AL

  28. Calzada J, Zamarro MT, Alcon A, Santos VE, Diaz E, Garcia JL, Garcia-Ochoa F (2009) Analysis of dibenzothiophene desulfurization in a recombinant Pseudomonas putida strain. Appl Environ Microbiol 75:875–877

    Article  CAS  Google Scholar 

  29. Luedeking R, Piret EL (1959) A kinetic study of the lactic acid fermentation: batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–412

    Article  CAS  Google Scholar 

  30. Weiss RM, Ollis DF (1980) Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotech Bioeng 22:859–873

    Article  CAS  Google Scholar 

  31. Garcia-Ochoa F, Gomez E (2004) Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem Eng Sci 59:2489–24501

    Article  CAS  Google Scholar 

  32. Garcia-Ochoa F, Gomez E (2005) Prediction of gas-liquid mass transfer in sparged stirred tank bioreactors. Biotech Bioeng 92:761–772

    Article  CAS  Google Scholar 

  33. Santos VE, Galdeano C, Gomez E, Alcon A, Garcia-Ochoa F (2006) Oxygen uptake rate measurements both by the dynamic method and during the process growth of Rhodococcus erythropolis IGTS8: modelling and difference in results. Biochem Eng J 32:198–204

    Article  CAS  Google Scholar 

  34. Garcia-Ochoa F, Gomez E (2010) Oxygen transfer rate: determination, chemical, physical and biological methods. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken

    Google Scholar 

  35. Martinez I, Santos VE, Gomez E, Garcia-Ochoa F (2014) Biodesulfurization of dibenzothiophene by resting cells of Pseudomonas putida CECT5279: influence of the oxygen transfer rate in the scale-up from shaken flask to stirred tank reactor. J Chem Technol Biotechnol. doi:10.1002/jctb.4559

    Google Scholar 

  36. Etemadifar Z, Emtiazi G, Christofi N (2008) Enhanced Desulfurization Activity in Protoplast Transformed Rhodococcus erythropolis. Am Eurasian J Agric Environ Sci 3:795–801

    Google Scholar 

  37. Marquardt AW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by MICINN under contracts CTQ2013-45970-C2-1-R, CTQ2011-12725-E and BSCH-UCM, GR35/10-A 910134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Garcia-Ochoa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, S., Rodriguez, A., Gomez, E. et al. Influence of oxygen transfer on Pseudomonas putida effects on growth rate and biodesulfurization capacity. Bioprocess Biosyst Eng 39, 545–554 (2016). https://doi.org/10.1007/s00449-016-1536-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1536-6

Keywords

Navigation