Skip to main content

Advertisement

Log in

High-productivity lipid production using mixed trophic state cultivation of Auxenochlorella (Chlorella) protothecoides

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A mixed trophic state production process for algal lipids for use as feedstock for renewable biofuel production was developed and deployed at subpilot scale using a green microalga, Auxenochlorella (Chlorella) protothecoides. The process is composed of two separate stages: (1) the photoautotrophic stage, focused on biomass production in open ponds, and (2) the heterotrophic stage focused on lipid production and accumulation in aerobic bioreactors using fixed carbon substrates (e.g., sugar). The process achieved biomass and lipid productivities of 0.5 and 0.27 g/L/h that were, respectively, over 250 and 670 times higher than those obtained from the photoautotrophic cultivation stage. The biomass oil content (over 60 % w/DCW) following the two-stage process was predominantly monounsaturated fatty acids (~82 %) and largely free of contaminating pigments that is more suitable for biodiesel production than photosynthetically generated lipid. Similar process performances were obtained using cassava hydrolysate as an alternative feedstock to glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heinrich JM, Niizawa I, Botta FA, Trombert AR, Irazoqui HA (2012) Analysis and design of photobioreactors for microalgae production II: experimental validation of a radiation field simulator based on a Monte Carlo algorithm. Photochem Photobiol 88(4):952–960. doi:10.1111/j.1751-1097.2012.01149.x

    Article  CAS  Google Scholar 

  2. Xu L, Guo C, Wang F, Zheng S, Liu C-Z (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102(21):10047–10051. doi:10.1016/j.biortech.2011.08.021

    Article  CAS  Google Scholar 

  3. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Advances 30(3):709–732. doi:10.1016/j.biotechadv.2012.01.001

    Article  CAS  Google Scholar 

  4. Mercer P, Armenta R (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol. doi:10.1002/ejlt.201000455

    Google Scholar 

  5. Faeth J, Valdez P, Savage P (2013) Fast hydrothermal liquefaction of Nannochloropis sp. to produce biocrude. Energy Fuels 27:1391–1398

    Article  CAS  Google Scholar 

  6. Onwudili JA, Lea-Langton AR, Ross AB, Williams PT (2013) Catalytic hydrothermal gasification of algae for hydrogen production: composition of reaction products and potential for nutrient recycling. Bioresour Technol 127:72–80. doi:10.1016/j.biortech.2012.10.020

    Article  CAS  Google Scholar 

  7. Rampton R, Zabarenko D (2012) Algae biofuel not sustainable now, review says. msnbccom

  8. Leite GB, Abdelaziz AEM, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141. doi:10.1016/j.biortech.2013.02.007

    Article  CAS  Google Scholar 

  9. Samejima H, Myers J (1958) On the heterotrophic growth of Chlorella pyrenoidosa. J Gen Microbiol 18(1):107–117

    Article  CAS  Google Scholar 

  10. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846. doi:10.1016/j.biortech.2005.04.008

    Article  CAS  Google Scholar 

  11. Azam F, Hemmingsen BB, Volcani BE (1974) Role of silicon in diatom metabolism. V. Silicic acid transport and metabolism in the heterotrophic diatom Nitzschia alba. Arch Microbiol 97(2):103–114

    Article  CAS  Google Scholar 

  12. Lewin J, Hellebust JA (1975) Heterotrophic nutrition of the marine pennate diatom Navicula pavillardi Hustedt. Can J Microbiol 21(9):1335–1342

    Article  CAS  Google Scholar 

  13. Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34(5):461–465. doi:10.1016/j.enzmictec.2003.12.002

    Article  CAS  Google Scholar 

  14. Fabregas J, Garcia D, Lamela T, Morales ED, Otero A (1999) Mixotrophic production of phycoerythrin and exopolysaccharide by the microalga Porphyridium cruentum. Cryptogamie Algologie 20(2):89–94

    Article  Google Scholar 

  15. Kamjunke N, Tittel J (2009) Mixotrophic algae constrain the loss of organic carbon by exudation. J Phycol 45(4):807–811. doi:10.1111/j.1529-8817.2009.00707.x

    Article  CAS  Google Scholar 

  16. Sforza E, Cipriani R, Morosinotto T, Bertucco A, Giacometti GM (2012) Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour Technol 104:523–529. doi:10.1016/j.biortech.2011.10.025

    Article  CAS  Google Scholar 

  17. Hu B, Min M, Zhou W, Du Z, Mohr M, Chen P, Zhu J, Cheng Y, Liu Y, Ruan R (2012) Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresour Technol 126C:71–79. doi:10.1016/j.biortech.2012.09.031

    Article  Google Scholar 

  18. Ogbonna JC, Masui H, Tanaka H (1997) Sequential heterotrophic/autotrophic cultivation—an efficient method of producing Chlorella biomass for health food and animal feed. J Appl Phycol 9:359–366

    Article  Google Scholar 

  19. Oyler JR (2008) Two-stage process for producing oil from microalgae. USA Patent, 8,475,543

  20. Sayre R, Pereira S (2010) Molecuar approaches for the optimization of biofuel productions. USA Patent, 20100317073

  21. Wu Q, Xiong W (2009) Method for producing biodiesel from an alga. USA Patent, 20090298159

  22. Krohn BJ, McNeff CV, Yan B, Nowlan D (2011) Production of algae-based biodiesel using the continuous catalytic Mcgyan process. Bioresour Technol 102(1):94–100. doi:10.1016/j.biortech.2010.05.035

    Article  CAS  Google Scholar 

  23. Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162(7):1978–1995. doi:10.1007/s12010-010-8974-4

    Article  CAS  Google Scholar 

  24. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507. doi:10.1016/j.jbiotec.2006.05.002

    Article  CAS  Google Scholar 

  25. Huss V, Frank C, Hartmann E, Hirmer M, Kloboucek A, Seidel B, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598

    Article  CAS  Google Scholar 

  26. Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110(1):85–93. doi:10.1016/j.jbiotec.2004.01.013

    Article  CAS  Google Scholar 

  27. Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4(2):403–410

    Article  CAS  Google Scholar 

  28. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  29. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(3):965–973

    Article  CAS  Google Scholar 

  30. Sayre RT (2009) Optimization of biofuel production. USA Patent US20090181438

  31. Santos CA, Nobre B, Lopes da Silva T, Pinheiro HM, Reis A (2014) Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. J Biotechnol 184:74–83. doi:10.1016/j.jbiotec.2014.05.012

    Article  CAS  Google Scholar 

  32. Ramos MJ, Fernandez CM, Casas A, Rodriguez L, Perez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100(1):261–268. doi:10.1016/j.biortech.2008.06.039

    Article  CAS  Google Scholar 

  33. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639. doi:10.1111/j.1365-313X.2008.03492.x

    Article  CAS  Google Scholar 

  34. Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78(1):29–36. doi:10.1007/s00253-007-1285-1

    Article  CAS  Google Scholar 

  35. Hortensteiner S, Chinner J, Matile P, Thomas H, Donnison IS (2000) Chlorophyll breakdown in Chlorella protothecoides: characterization of degreening and cloning of degreening-related genes. Plant Mol Biol 42(3):439–450

    Article  CAS  Google Scholar 

  36. Ramos Tercero EA, Sforza E, Morandini M, Bertucco A (2014) Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal. Appl Biochem Biotechnol 172(3):1470–1485. doi:10.1007/s12010-013-0629-9

    Article  CAS  Google Scholar 

  37. Lu Y, Zhai Y, Liu M, Wu Q (2010) Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J Appl Phycol 22(5):573–578. doi:10.1007/s10811-009-9496-8

    Article  CAS  Google Scholar 

  38. Shetty J, Chotani G, Gand D, Bates D (2007) Cassava as an alternative feedstock in the production of renewable transportation fuels. Intl Sugar J 109(1307):663–677

    Google Scholar 

Download references

Acknowledgments

This research project was supported under the Department of Energy grant DE-FE-0000888 awarded by National Energy Technology Laboratory. Additional support was supplied by a large group of excellent support staff at Phycal in the R&D group who worked tirelessly to help enable this process.

Conflict of interest

All authors were former employees of Phycal Inc. and paid in part from a grant supplied by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Rismani-Yazdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rismani-Yazdi, H., Hampel, K.H., Lane, C.D. et al. High-productivity lipid production using mixed trophic state cultivation of Auxenochlorella (Chlorella) protothecoides . Bioprocess Biosyst Eng 38, 639–650 (2015). https://doi.org/10.1007/s00449-014-1303-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1303-5

Keywords

Navigation