Skip to main content
Log in

Production of manganese peroxidase and laccase in a solid-state bioreactor and modeling of enzyme production kinetics

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lignin-modifying enzymes have various promising applications such as biobleaching, biopulping, the functionalization of lignocellulosic materials, the modification of wood fibers, the remediation of contaminated soil and effluents, as well as improvement of the enzymatic hydrolysis of lignocellulosic substrates. In this study, the production of laccase and manganese peroxidase (MnP) in solid-state cultivation was examined. Oat husks were used as an inexpensive substrate for the white-rot fungus Cerrena unicolor PM170798 (FBCC 387). The addition of a fines fraction (consisting of oat flour and finely ground husks) enhanced MnP production fivefold and laccase production almost threefold. The enzyme production was studied first on a 100 g scale, and the cultivation experiments were then repeated at a larger laboratory-scale (4 kg) in a solid-state bioreactor. High enzyme activity levels were obtained (MnP: 340 nkat g−1 DM, laccase: 470 nkat g−1 DM). In addition, the correlation between the CO2 evolution rate and enzyme production was mathematically modeled from the bioreactor experimental data. The model parameters could be used to predict enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CO2 :

Output CO2 concentration (%)

CO2,max :

Maximal CO2 concentration (%)

k d :

Death rate (day−1)

\( k_{{{\text{d,CO}}_{2} }} \) :

Decrease rate of CO2 evolution (day−1)

k P :

Product decay rate (day−1)

\( m_{{{\text{CO}}_{2} }} \) :

CO2 associated maintenance coefficient (day−1)

m P :

Product associated maintenance coefficient (day−1)

P :

Product concentration (g L−1)

\( r_{{{\text{CO}}_{2} ,{ \hbox{max} }}} \) :

CO2 evolution rate constant (day−1)

SSEd :

The sum of squared error in death phase

SSEg :

The sum of squared error in growth phase

t :

Time (day)

X :

Concentration of active biomass (g L−1)

X max :

Maximal biomass concentration (g L−1)

\( Y_{{{\text{CO}}_{2} /X}} \) :

Biomass-associated CO2 yield coefficient (g g−1)

Y i,est :

Simulated variable value

Y i,meas :

Measured variable value

Y P/X :

Biomass-associated product yield coefficient (g g−1)

γ :

Empirical parameter during growth phase

γ d :

Empirical parameter during death phase

µ :

Growth rate (day−1)

µ max :

Maximal growth rate (day−1)

τ :

Product synthesis delay (day)

References

  1. Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    Article  CAS  Google Scholar 

  2. Hatakka A (2001) In: Hofrichter M, Steinbüchel A (eds) Biopolymers, vol 1: lignin, humic substances and coal. Wiley, Weinheim

  3. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  4. Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87:871–897

    Article  CAS  Google Scholar 

  5. Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60:441–452

    Article  Google Scholar 

  6. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  7. Gold MH, Wariishi H, Valli K (1989) In: Whitaker JR (ed) ACS symposium series 389. American Chemical Society, Washington

    Google Scholar 

  8. Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    CAS  Google Scholar 

  9. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11:349–355

    Article  CAS  Google Scholar 

  10. Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    Article  CAS  Google Scholar 

  11. Hamid M, Khalil-ur-Rehman A (2009) Potential applications of peroxidases. Food Chem 115:1177–1186

    Article  CAS  Google Scholar 

  12. Kudanga T, Nyanhongo GS, Guebitz GM, Burton S (2011) Potential applications of laccase-mediated coupling and grafting reactions: a review. Enzyme Microb Technol 48:195–208

    Article  CAS  Google Scholar 

  13. Moilanen U, Kellock M, Galkin S, Viikari L (2011) The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microb Technol 49:492–498

    Article  CAS  Google Scholar 

  14. Rodríguez Couto S, Sanromán MA (2005) Application of solid-state fermentation to ligninolytic enzyme production. Biochem Eng J 22:211–219

    Article  Google Scholar 

  15. Cannel E, Moo-Young M (1980) Solid-state fermentation systems. Process Biochem 15:2–7

    CAS  Google Scholar 

  16. Hölker U, Höfer M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64:175–186

    Article  Google Scholar 

  17. Viniegra-González G, Favela-Torres E, Aguilar CN, Rómero-Gomez SdJ, Díaz-Godínez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167

    Article  Google Scholar 

  18. Fujian X, Hongzhang C, Zuohu L (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour Technol 80:149–151

    Article  CAS  Google Scholar 

  19. Gassara F, Brar SK, Tyagi R, Verma M, Surampalli R (2010) Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem Eng J 49:388–394

    Article  CAS  Google Scholar 

  20. Mazumder S, Basu SK, Mukherjee M (2009) Laccase production in solid-state and submerged fermentation by Pleurotus ostreatus. Eng Life Sci 9:45–52

    Article  CAS  Google Scholar 

  21. Papinutti VL, Diorio LA, Forchiassin F (2003) Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran. J Ind Microbiol Biotechnol 30:157–160

    Article  CAS  Google Scholar 

  22. Durand A (2003) Bioreactor designs for solid state fermentation. Biochem Eng J 13:113–125

    Article  CAS  Google Scholar 

  23. Virtanen V, Nyyssölä A, Leisola M, Seiskari P (2008) An aseptically operatable static solid state bioreactor consisting of two units. Biochem Eng J 39:594–597

    Article  CAS  Google Scholar 

  24. Lüth P, Eiben U (2003) Solid-state fermenter and method for solid-state fermentation. Patent US6620614 (B1)

  25. van der Wel PGJ, Oostra J, Rinzema A, Timmer HR (2001) Solids fermentation reactor. Patent EP1138373

  26. de Vrije T, Antoine N, Buitelaar RM, Bruckner S, Dissevelt M, Durand A, Gerlagh M, Jones EE, Lüth P, Oostra J (2001) The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl Microbiol Biotechnol 56:58–68

    Article  Google Scholar 

  27. Winquist E, Moilanen U, Mettälä A, Leisola M, Hatakka A (2008) Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochem Eng J 42:128–132

    Article  CAS  Google Scholar 

  28. Mattila T, Jääskeläinen S, Virtanen V, Moilanen U, Winquist E (2008) Bioreactor with an internal conveyor for mixing high viscosity materials. Patent WO2008107518

  29. Roussos S, Raimbault M, Prebois JP, Lonsane BK (1993) Zymotis, a large scale solid state fermenter, design and evaluation. Appl Biochem Biotechnol 42:37–52

    Article  CAS  Google Scholar 

  30. Determination of structural carbohydrates and lignin in biomass (2011) http://www.nrel.gov/biomass/pdfs/42618.pdf. Accessed 25 Jan 2013

  31. Niku-Paavola ML, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white-rot fungus Phlebia radiata. Biochem J 254:877–883

    CAS  Google Scholar 

  32. Hofrichter M, Scheibner K, Schneegaß I, Fritsche W (1998) Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl Environ Microbiol 64:399–404

    CAS  Google Scholar 

  33. Gelmi C, Pérez-Correa R, Agosin E (2002) Modelling Gibberella fujikuroi growth and GA3 production in solid-state fermentation. Process Biochem 37:1033–1040

    Article  CAS  Google Scholar 

  34. Szewczyk K, Myszka L (1994) The effect of temperature on the growth of A. niger in solid state fermentation. Bioprocess Eng 10:123–126

    Article  CAS  Google Scholar 

  35. Hashemi M, Mousavi S, Razavi S, Shojaosadati S (2011) Mathematical modeling of biomass and α-amylase production kinetics by Bacillus sp. in solid-state fermentation based on solid dry weight variation. Biochem Eng J 53:159–164

    Article  CAS  Google Scholar 

  36. Kapich AN, Prior BA, Botha A, Galkin S, Lundell T, Hatakka A (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enzyme Microb Technol 34:187–195

    Article  CAS  Google Scholar 

  37. Papinutti VL, Forchiassin F (2003) Optimization of manganese peroxidase and laccase production in the South American fungus Fomes sclerodermeus (Lév.) Cke. J Ind Microbiol Biotechnol 30:536–541

    Article  CAS  Google Scholar 

  38. Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42:290–296

    CAS  Google Scholar 

  39. Tavares A, Coelho M, Coutinho J, Xavier A (2005) Laccase improvement in submerged cultivation: induced production and kinetic modelling. J Chem Technol Biotechnol 80:669–676

    Article  Google Scholar 

  40. Rodríguez Couto S, Moldes D, Liébanas A, Sanromán A (2003) Investigation of several bioreactor configurations for laccase production by Trametes versicolor operating in solid-state conditions. Biochem Eng J 15:21–26

    Article  Google Scholar 

  41. Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. Appl Environ Microbiol 61:3515–3520

    CAS  Google Scholar 

  42. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  43. Janusz G, Rogalski J, Szczodrak J (2007) Increased production of laccase by Cerrena unicolor in submerged liquid cultures. World J Microbiol Biotechnol 23:1459–1464

    Article  CAS  Google Scholar 

  44. Nüske J, Scheibner K, Dornberger U, Ullrich R, Hofrichter M (2002) Large scale production of manganese-peroxidase using agaric white-rot fungi. Enzyme Microb Technol 30:556–561

    Article  Google Scholar 

  45. Fenice M, Giovannozzi Sermanni G, Federici F, D’Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85

    Article  CAS  Google Scholar 

  46. Domínguez A, Rivela I, Rodríguez Couto S, Sanromán M (2001) Design of a new rotating drum bioreactor for ligninolytic enzyme production by Phanerochaete chrysosporium grown on an inert support. Process Biochem 37:549–554

    Article  Google Scholar 

  47. Rivela I, Rodríguez Couto S, Sanromán A (2000) Extracellular ligninolytic enzyme production by Phanerochaete chrysosporium in a new solid-state bioreactor. Biotechnol Lett 22:1443–1447

    Article  CAS  Google Scholar 

  48. Böhmer U, Frömmel S, Bley T, Müller M, Frankenfeld K, Miethe P (2011) Solid-state fermentation of lignocellulotic materials for the production of enzymes by the white-rot fungus Trametes hirsuta in a modular bioreactor. Eng Life Sci 11:395–401

    Article  Google Scholar 

  49. Ikasari L, Mitchell DA (1998) Oxygen uptake kinetics during solid state fermentation with Rhizopus oligosporus. Biotechnol Tech 12:171–175

    Article  CAS  Google Scholar 

  50. Koutinas AA, Wang R, Webb C (2003) Estimation of fungal growth in complex, heterogeneous culture. Biochem Eng J 14:93–100

    Article  CAS  Google Scholar 

  51. Tavares APM, Coelho MAZ, Agapito MSM, Coutinho JAP, Xavier AMRB (2006) Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Appl Biochem Biotechnol 134:233–248

    Article  CAS  Google Scholar 

  52. Thiruchelvam A, Ramsay JA (2007) Growth and laccase production kinetics of Trametes versicolor in a stirred tank reactor. Appl Microbiol Biotechnol 74:547–554

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Veera Virtanen, Seppo Jääskeläinen, Kalle Salonen, and Andreas Nyqvist for their assistance in reactor design, building, instrumentation, and creation of the user interface. We also thank Aila Mettälä for screening C. unicolor strains on oat husks for our work. Liisa Viikari is acknowledged for the critical comments concerning the manuscript. This study was funded by the Finnish Funding Agency for Technology and Innovation (TEKES) and the Finnish Graduate School on Applied Bioscience: Bioengineering, Food and Nutrition, Environment (ABS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulla Moilanen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moilanen, U., Winquist, E., Mattila, T. et al. Production of manganese peroxidase and laccase in a solid-state bioreactor and modeling of enzyme production kinetics. Bioprocess Biosyst Eng 38, 57–68 (2015). https://doi.org/10.1007/s00449-014-1243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1243-0

Keywords

Navigation