Skip to main content
Log in

Interactions between fungal growth, substrate utilization, and enzyme production during solid substrate cultivation of Phanerochaete chrysosporium on cotton stalks

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Fungal pretreatment, using lignin-degrading microorganisms to improve lignocellulosic feedstocks with minimal energy input, is a potential alternative to physiochemical pretreatment methods. Identifying the kinetics for fungal pretreatment during solid substrate cultivation is needed to help establish the processing conditions for effective scale up of this technology. In this study, a set of mathematical models were proposed for describing the interactions between holocellulose consumption, lignin degradation, cellulase, ligninolytic enzyme, and the growth of Phanerochaete chrysosporium during a 14 day fungal pretreatment process. Model parameters were estimated and validated by the System Biology Toolbox in MatLab. Developed models provided sufficiently accurate predictions for fungal growth (R 2 = 0.97), holocellulose consumption (R 2 = 0.97), lignin degradation (R 2 = 0.93) and ligninolytic enzyme production (R 2 = 0.92), and fair prediction for cellulase production (R 2 = 0.61). The models provide valuable information for understanding the interactive mechanisms in biological systems as well as for fungal pretreatment process scale up and improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α C :

Growth-associated constant for cellulase formation, (g enzyme protein) (g DM)−1

α L :

Growth-associated constant for ligninolytic enzyme formation, (g enzyme protein) (g DM)−1

β C :

Non-growth-associated constant for cellulase formation, (g enzyme protein) (g DM)−1

β L :

Non-growth-associated constant for ligninolytic enzyme formation, (g enzyme protein) (g DM)−1

μ max :

The maximum specific growth rate, day−1

C FPU :

Cellulase activity per ml of enzyme extract, IU ml−1

C TKN,E :

Amount of TKN per ml of enzyme extract, (g TKN) ml−1

C TKN,base :

Base TKN content in autoclaved cotton stalk extract, (g TKN) ml−1

C TKN,S :

Amount of TKN in pretreated solids, (g TKN) (g DM)−1

CCP:

Cumulative CO2 production (mmol)

COU:

Cumulative oxygen uptake (mmol)

CPR:

CO2 production rate (mmol day−1)

DM:

Dry matter

DML:

Dry matter loss

k E = 1/1070:

Conversion coefficient from cellulase activity to cellulase proteins, (g cellulase proteins) IU−1

k LD :

Coefficient of lignin degradation

k LL :

Coefficient of ligninolytic enzyme production, (g enzyme protein) (g fungal biomass)−1 day−1

k T = 10.3:

Conversion coefficient from TKN to fungal biomass, based on the amount of TKN in pure P. chrysosporium fungal biomass, (g fungal biomass) (g TKN)−1

m :

Maintenance coefficient, (g cellulose and hemicellulose) (g fungal biomass)−1 day−1

m O :

Maintenance coefficient, (mmol O2) (g fungal biomass)−1 day−1

OU:

Oxygen uptake, mmol

OU0 :

Initial oxygen uptake, mmol

OUR:

Oxygen uptake rate, (mmol O2) day−1

P C :

Cellulase concentration, (g enzyme protein) (g DM)−1

P C,0 :

Initial cellulase concentration at time 0, (g enzyme protein) (g DM)−1

P L :

Ligninolytic enzymes concentration, (g enzyme protein) (g DM)−1

P L,0 :

Initial ligninolytic enzymes concentration, (g enzyme protein) (g DM)−1

S C :

Cellulose and hemicellulose content, g (g DM)−1

S C,0 :

Initial cellulose and hemicellulose content, g (g DM)−1

S L :

Lignin content, g (g DM)−1

S L,0 :

Initial lignin content, g (g DM)−1

t :

Pretreatment time, day

TKN:

Total Kjeldahl Nitrogen, %

V = 20:

Volume of enzyme extracts, ml

w :

Dry weight of pretreated sample, g DM

w 0 :

The initial sample dry weight before pretreatment, g DM

X :

The fungal biomass content, g (g DM)−1

X 0 :

Initial fungal biomass content, g (g DM)−1

X max :

Maximum biomass content, g (g DM)−1

Y X/O :

The oxygen to fungal biomass yield coefficient (g−X mmol−1 O2)

Y X/S :

The substrate to fungal biomass yield coefficient, (g fungal biomass) (g cellulose and hemicellulose DM)−1

References

  1. Aden A, Foust T (2009) Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose 16:535–545

    Article  CAS  Google Scholar 

  2. Wyman CE, Balan V, Dale BE, Elander RT, Falls M, Hames B et al (2011) Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresour Technol 102:11052–11062

    Article  CAS  Google Scholar 

  3. Shi J, Ebrik MA, Yang B, Garlock RJ, Balan V, Dale BE et al (2011) Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresour Technol 102:11080–11088

    Article  CAS  Google Scholar 

  4. Hadar Y, Kerem Z, Gorodecki B (1993) Biodegradation of lignocellulosic agricultural wastes by Pleurotus ostreatus. J Biotechnol 30:133–139

    Article  CAS  Google Scholar 

  5. Camarero S, Galletti GC, Martinez AT (1994) Preferential degradation of phenolic lignin units by 2 white-rot fungi. Appl Environ Microb 60:4509–4516

    CAS  Google Scholar 

  6. Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T (1995) Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol Bioeng 48:719–724

    Article  CAS  Google Scholar 

  7. Watts S, Hamilton G, Keller J (2006) Two-stage thermophilic–mesophilic anaerobic digestion of waste activated sludge-from a biological nutrient removal plant. Water Sci Technol 53:149–157

    Article  CAS  Google Scholar 

  8. Shi J, Chinn MS, Sharma-Shivappa RR (2008) Microbial pretreatment of cotton stalks by solid state cultivation of Phanerochaete chrysosporium. Bioresour Technol 99:6556–6564

    Article  CAS  Google Scholar 

  9. Bak JS, Ko JK, Choi IG, Park YC, Seo JH, Kim KH (2009) Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnol Bioeng 104:471–482

    Article  CAS  Google Scholar 

  10. Wan C, Li Y (2011) Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresour Technol 102:7507–7512

    Article  CAS  Google Scholar 

  11. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  CAS  Google Scholar 

  12. Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial-degradation of lignin. Ann Rev Microb 41:465–505

    Article  CAS  Google Scholar 

  13. Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microb 117:277–285

    Article  CAS  Google Scholar 

  14. Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161:238–249

    Article  CAS  Google Scholar 

  15. Barclay CD, Legge RL, Farquhar GF (1993) Modeling the growth-kinetics of Phanerochaete chrysosporium in submerged static culture. Appl Environ Microb 59:1887–1892

    CAS  Google Scholar 

  16. Couto SR, Ratto M (1998) Effect of veratryl alcohol and manganese (IV) oxide on ligninolytic activity in semi solid cultures of Phanerochaete chrysosporium. Biodegradation 9:143–150

    Article  CAS  Google Scholar 

  17. Michel FC, Grulke EA, Reddy CA (1992) Determination of the respiration kinetics for mycelial pellets of Phanerochaete chrysosporium. Appl Environ Microb 58:1740–1745

    CAS  Google Scholar 

  18. Shi J, Sharma-Shivappa RR, Chinn MS (2012) Interactions between fungal growth, substrate utilization and enzyme production during shallow stationary cultivation of Phanerochaete chrysosporium on cotton stalks. Enzym Microb Technol 51:1–8

    Article  CAS  Google Scholar 

  19. Mitchell RB, Vogel KP, Klopfenstein TJ, Anderson BE, Masters RA (2005) Grazing evaluation of big bluestems bred for improved forage yield and digestibility. Crop Sci 45:2288–2292

    Article  Google Scholar 

  20. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  21. Matcham SE, Jordan BR, Wood DA (1985) Estimation of fungal biomass in a solid substrate by 3 independent methods. Appl Microb Biotechnol 21:108–112

    CAS  Google Scholar 

  22. Desgranges C, Vergoignan C, Georges M, Durand A (1991) Biomass estimation in solid-state fermentation 1. Manual biochemical methods. Appl Microb Biotechnol 35:200–205

    CAS  Google Scholar 

  23. Desgranges C, Georges M, Vergoignan C, Durand A (1991) Biomass estimation in solid-state fermentation 2. Online measurements. Appl Microb Biotechnol 35:206–209

    CAS  Google Scholar 

  24. Terebiznik MR, Pilosof AMR (1999) Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol Tech 13:215–219

    Article  CAS  Google Scholar 

  25. Otjen L, Blanchette RA (1985) Selective delignification of aspen wood blocks invitro by 3 white rot basidiomycetes. Appl Environ Microb 50:568–572

    CAS  Google Scholar 

  26. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks 1. Review and description of methods. J Agric Food Chem 58:9043–9053

    Article  CAS  Google Scholar 

  27. Chinn MS (2003) Solid substrate cultivation of anaerobic thermophilic bacteria for the production of cellulolytic enzymes, PhD dissertation. University of Kentucky, Lexington

  28. EPA Manual 351.2 (1979) Determination of total kjeldahl nitrogen by semi-automated colorimetry. Report No.: EPA 60014-79-020

  29. Smits JP, Rinzema A, Tramper J, Schlosser EE, Knol W (1996) Accurate determination of process variables in a solid-state fermentation system. Process Biochem 31:669–678

    Article  CAS  Google Scholar 

  30. Shi J, Sharma-Shivappa RR, Chinn M, Dean RA, Shivappa RB (2007) Challenges in quantification of ligninolytic enzymes from Phanerochaete chrysosporium cultivation for pretreatment of cotton stalks. Trans ASABE 50:2347–2354

    Article  CAS  Google Scholar 

  31. Sangsurasak P, Nopharatana M, Mitchell DA (1996) Mathematical modeling of the growth of filamentous fungi in solid state fermentation. J Sci Ind Res 55:333–342

    CAS  Google Scholar 

  32. Lenz J, Hofer M, Krasenbrink JB, Holker U (2004) A survey of computational and physical methods applied to solid-state fermentation. Appl Microb Biotechnol 65:9–17

    Article  CAS  Google Scholar 

  33. Pearl R, Reed LJ (1920) On the rate of growth of the population of the United States since 1790 and its mathematical representation. PNAS 6:275–288

    Article  CAS  Google Scholar 

  34. Viccini G, Mitchell DA, Boit SD, Gern JC, da Rosa AS, Costa RM et al (2001) Analysis of growth kinetic profiles in solid-state fermentation. Food Technol Biotechnol 39:271–294

    CAS  Google Scholar 

  35. Monod J (1949) The growth of bacterial cultures. Ann Rev Microb 3:371–394

    Article  CAS  Google Scholar 

  36. Tsao GT, Hanson TP (1975) Extended monod equation for batch cultures with multiple exponential phases. Biotechnol Bioeng 17:1591–1598

    Article  Google Scholar 

  37. Pirt SJ (1965) Maintenance energy of bacteria in growing cultures. Proc R Soc Ser B 163:224–231

    Article  CAS  Google Scholar 

  38. Pirt SJ, Righelat RC (1967) Effect of growth rate on synthesis of penicillin by Penicillium chrysogenum in batch and chemostat cultures. Appl Microb 15:1284–1290

    CAS  Google Scholar 

  39. Mitchell DA, von Meien OF, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26

    Article  CAS  Google Scholar 

  40. Luedeking R, Piret EL (1959) Transient and steady states in continuous fermentation: theory and experiment. J Biochem Microb Technol Eng 1:431–459

    Article  CAS  Google Scholar 

  41. Schmidt H, Jirstrand M (2006) Systems biology toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22:514–515

    Article  CAS  Google Scholar 

  42. Bellon-Maurel W, Orliac O, Christen P (2003) Sensors and measurements in solid state fermentation: a review. Process Biochem 38:881–896

    Article  CAS  Google Scholar 

  43. Laukevics JJ, Apsite AF, Viesturs UE, Tengerdy RP (1984) Solid substrate fermentation of wheat straw to fungal protein. Biotechnol Bioeng 26:1465–1474

    Article  CAS  Google Scholar 

  44. Nishio N, Tai K, Nagai S (1979) Hydrolase production by Aspergillus niger in solid-state cultivation. E J Appl Microb Biotechnol 8:263–270

    Article  CAS  Google Scholar 

  45. Okazaki N, Sugama S, Tanaka T (1980) Growth of Koji mold on the surface of steamed rice grains. 9. Mathematical-model for surface culture of Koji mold. J Ferment Technol 58:471–476

    CAS  Google Scholar 

  46. Dorta B, Bosch A, Arcas J, Ertola R (1994) Water-balance in solid-state fermentation without forced aeration. Enzym Microb Technol 16:562–565

    Article  CAS  Google Scholar 

  47. Ikasari L, Mitchell DA (1998) Oxygen uptake kinetics during solid state fermentation with Rhizopus oligosporus. Biotechnol Tech 12:171–175

    Article  CAS  Google Scholar 

  48. May BA, VanderGheynst JS, Rumsey T (2006) The kinetics of Lagenidium giganteum growth in liquid and solid cultures. J Appl Microb 101:807–814

    Article  CAS  Google Scholar 

  49. Levonenmunoz E, Bone DH (1985) Effect of different gas environments on bench-scale solid-state fermentation of oat straw by white-rot fungi. Biotechnol Bioeng 27:382–387

    Article  CAS  Google Scholar 

  50. Atkinson CF, Jones DD, Gauthier JJ (1997) Microbial activities during composting of pulp and paper-mill primary solids. W J Microb Biotechnol 13:519–525

    Article  CAS  Google Scholar 

  51. Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by 2 wood-rotting fungi. Appl Environ Microb 32:192–194

    CAS  Google Scholar 

  52. Ander P, Eriksson KE (1975) Influence of carbohydrates on lignin degradation by white-rot fungus Sporotrichum pulverulentum. Sven Papperstidning Nordisk Cellul 78:643–652

    CAS  Google Scholar 

  53. Ntwampe SKO, Sheldon MS (2006) Quantifying growth kinetics of Phanerochaete chrysosporium immobilised on a vertically orientated polysulphone capillary membrane: biofilm development and substrate consumption. Biochem Eng J 30:147–151

    Article  CAS  Google Scholar 

  54. Sheldon MS, Mohammed K, Ntwampe SKO (2008) An investigation of biphasic growth kinetics for Phanerochaete chrysosporium (BKMF-1767) immobilised in a membrane gradostat reactor using flow-cells. Enzym Microb Technol 42:353–361

    Article  CAS  Google Scholar 

  55. Bothwell MK, Wilson DB, Irwin DC, Walker LP (1997) Binding reversibility and surface exchange of Thermomonospora fusca E-3 and E-5 and Trichoderma reesei CBHI. Enzym Microb Technol 20:411–417

    Article  CAS  Google Scholar 

  56. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011

    Article  CAS  Google Scholar 

  57. Shi J, Sharma-Shivappa RR, Chinn M, Howell N (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenergy 33:88–96

    Article  CAS  Google Scholar 

  58. Kirk TK (1986) Recent progress in lignin biodegradation research. Symbiosis 2:111

    Google Scholar 

  59. Kerem Z, Friesem D, Hadar Y (1992) Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microb 58:1121–1127

    CAS  Google Scholar 

  60. Taniguchi M, Suzuki H, Watanabe D, Sakai K, Hoshino K, Tanaka T (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J Biosci Bioeng 100:637–643

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Van Den Truong (Dept of Food Science, NCSU), Roger Thompson (USDA-ARS, NCSU) and Rachel S. Huie (Dept of Biological and Agricultural Engineering, NCSU) for generously helping with TKN and O2/CO2 analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari S. Chinn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Chinn, M.S. & Sharma-Shivappa, R.R. Interactions between fungal growth, substrate utilization, and enzyme production during solid substrate cultivation of Phanerochaete chrysosporium on cotton stalks. Bioprocess Biosyst Eng 37, 2463–2473 (2014). https://doi.org/10.1007/s00449-014-1224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1224-3

Keywords

Navigation