Skip to main content
Log in

Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Safe and eco-friendly alternatives to currently used hazardous chemico-physical methods of silver nanoparticles (AgNPs) synthesis are need of time. Rapid, low cost, selective detection of toxic metals in environmental sample is important to take safety action. Toxicity assessment of engineered AgNPs is essential to avoid its side effects on human and non-target organisms. In the present study, biologically active latex from Euphorbia heterophylla (Poinsettia) was utilized for synthesis of AgNPs. AgNPs was of spherical shape and narrow size range (20–50 nm). Occurrence of elemental silver and crystalline nature of AgNPs was analyzed. Role of latex metabolites in reduction and stabilization of AgNPs was analyzed by FT-IR, protein coagulation test and phytochemical analysis. Latex-synthesized AgNPs showed potential in selective and sensitive detection of toxic mercury ions (Hg2+) with limit of detection around 100 ppb. Addition of Hg2+ showed marked deviation in color and surface plasmon resonance spectra of AgNPs. Toxicity studies on aquatic non-target species Daphnia magna showed that latex-synthesized AgNPs (20.66 ± 1.52 % immobilization) were comparatively very less toxic than chemically synthesized AgNPs (51.66 ± 1.52 % immobilization). Similarly, comparative toxicity study on human red blood cells showed lower hemolysis (4.46 ± 0.01 %) by latex-synthesized AgNPs as compared to chemically synthesized AgNPs causing 6.14 ± 0.01 % hemolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agrawal AA, Konno K (2009) Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  2. Kumar VL, Roy S (2007) Mediat Inflamm. doi:10.1155/2007/47523

    Google Scholar 

  3. Yadav RP, Patel AK, Jagannadham MV (2011) Process Biochem 46:1654–1662

    Article  CAS  Google Scholar 

  4. Patel GK, Kawale AA, Sharma AK (2012) Plant Physiol Biochem 52:104–111

    Article  CAS  Google Scholar 

  5. Biscaro F, Parisotto EB, Zanette VC, Günther TM, Ferreira EA, Gris EF, Correia JF, Pich CT, Mattivi F, Filho DW, Pedrosa RC (2013) Pharm Biol 51:737–743

    Article  CAS  Google Scholar 

  6. Das RK, Sharma P, Nahar P, Bora U (2011) Mater Lett 65:610–613

    Article  CAS  Google Scholar 

  7. Borase HP, Patil CD, Salunkhe RB, Suryawanshi RK, Salunke BK, Patil SV (2014) Bioprocess Biosyst Eng. doi:10.1007/s00449-014-1142-4

    Google Scholar 

  8. Wilson AK (1981) Trop Pest Manage 27:32–38

    Article  Google Scholar 

  9. Falodun A, Ali S, Quadir MI, Choudhary IMI (2008) J Med Plants Res 2:365–369

    Google Scholar 

  10. Fred-Jaiyesimi AA, Abo KA (2010) Pharmacogn J 2:1–4

    Article  Google Scholar 

  11. Lee H-J, Song JY, Kim BS (2013) J Chem Technol Biotechnol 88:1971–1977

    CAS  Google Scholar 

  12. Baruah B, Gabriel GJ, Akbashev MJ, Booher ME (2013) Langmuir 29:4225–4234

    Article  CAS  Google Scholar 

  13. Kumar V, Yadav SK (2009) J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  14. Gan PP, Li SFY (2012) Rev Environ Sci Biotechnol 11:169–206

    Article  CAS  Google Scholar 

  15. Borase HP, Patil CD, Suryawanshi RK, Patil SV (2013) Appl Biochem Biotechnol 171:676–688

    Article  CAS  Google Scholar 

  16. Zahir F, Rizwi SJ, Haq SK, Khan RH (2005) Environ Toxicol Pharmacol 20:351–360

    Article  CAS  Google Scholar 

  17. Fan Y, Liu Z, Wang L, Zhan J (2009) Nanoscale Res Lett 4:1230–1235

    Article  CAS  Google Scholar 

  18. Wang Y, Yang F, Yang X (2010) ACS Appl Mater Interfaces 2:339–342

    Article  CAS  Google Scholar 

  19. Pandey S, Goswami GK, Nanda KK (2012) Int J Biol Macromol 51:583–589

    Article  CAS  Google Scholar 

  20. Ren X, Meng X, Tang F (2005) Sensors Actuators B 110:358–363

    Article  CAS  Google Scholar 

  21. Qi L, Shang Y, Wu F (2012) Microchim Acta 178:221–227

    Article  CAS  Google Scholar 

  22. Masinde LA, Sheng W, Xu X, Zhang Y, Yuan M, Kennedy IR, Wang S (2013) Microchim Acta 180:921–928

    Article  CAS  Google Scholar 

  23. Mohammed M, Rahman MM, Khan SB, Jamal A, Faisal M, Asiri AM (2012) Microchim Acta 178:99–106

    Article  Google Scholar 

  24. Vignesha V, Anbarasi KF, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, Thirumurugan R (2013) Colloids Surf A: Physicochem Eng Aspects. doi:10.1016/j.colsurfa.2013.04.011

    Google Scholar 

  25. Rani PU, Rajasekharreddy P (2011) Colloids Surf A: Physicochem Eng Aspects 389:188–194

    Article  Google Scholar 

  26. Borase HP, Patil CD, Salunkhe RB, Suryawanshi RK, Salunke BK, Patil SV (2013) Biotechnol Appl Biochem. doi:10.1002/bab.1189

    Google Scholar 

  27. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009) Colloids Surf A: Physicochem Eng Aspects 339:134–139

    Article  CAS  Google Scholar 

  28. Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Mater Chem Phys 104:276–283

    Article  CAS  Google Scholar 

  29. Dong PV, Ha CH, Binh LT, Kasbohm J (2012) Int Nano Lett 2:1–9

    Article  Google Scholar 

  30. Guidelli EJ, Ramos AP, Zaniquelli MED, Baffa O (2011) Spectrochi Acta A 82:140–145

    Article  CAS  Google Scholar 

  31. Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010) Anal Bioanal Chem 398:689–700

    Article  CAS  Google Scholar 

  32. Guilhermino L, Diamantino T, Silva MC, Soares AMVM (2000) Ecotoxicol Environ Safe 46:357–362

    Article  CAS  Google Scholar 

  33. Joglekar M, Roggers RA, Zhao Y, Trewyn BG (2013) R Soc Chem Adv 3:2454–2461

    CAS  Google Scholar 

  34. El-Sayed MEH, Hoffman AS, Stayton PS (2005) J Control Release 101:47–58

    Article  CAS  Google Scholar 

  35. Shivaprasad HV, Rajesh R, Nanda BL, Dharmappa KK, Vishwanath BS (2009) J Ethnopharmacol 123:106–109

    Article  CAS  Google Scholar 

  36. Fonseca KC, Morais NCG, Queiroz MR, Silva MC, Gomes MS, Costa JO, Mamede CCN, Torres FS, Silva NP, Beletti ME, Canabrava HAN, Oliveira F (2010) Phytochemistry 71:708–715

    Article  CAS  Google Scholar 

  37. Trandafilović LV, Luyt AS, Bibić N, Dimitrijević-Branković S, Georges MK, Radhakrishnan T, Djoković V (2012) Colloids Surf A: Physicochem Eng Aspects 4:17–25

    Article  Google Scholar 

  38. Ravindran A, Chandran P, Khan SS (2013) Colloids Surf B: Biointerfaces 105:342–352

    Article  CAS  Google Scholar 

  39. Mulvaney P (1996) Langmuir 12:788–800

    Article  CAS  Google Scholar 

  40. Prathna TC, Chandrasekaran N, Mukherjee A (2011) Colloids Surf A: Physicochem Eng Aspects 390:216–224

    Article  CAS  Google Scholar 

  41. Xiong J, Wu X-D, Xue Q-J (2014) Colloids Surf A: Physicochem Eng Aspects 441:109–115

    Article  CAS  Google Scholar 

  42. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) J Nanopart Res 13:2981–2988

    Article  CAS  Google Scholar 

  43. Begum NA, Mondal S, Basu S, Laskar SRA, Mandal D (2009) Colloids Surf B: Biointerfaces 71:113–118

    Article  CAS  Google Scholar 

  44. Ding N, Zhao H, Peng W, He Y, Zhou Y, Yuan L, Zhang Y (2012) Colloids Surf A: Physicochem Eng Aspects 395:161–167

    Article  CAS  Google Scholar 

  45. Tomar R, Kumar R, Jagannadham MV (2008) J Agric Food Chem 56:1479–1487

    Article  CAS  Google Scholar 

  46. Haas KL, Franz KJ (2009) Chem Rev 109:4921–4960

    Article  CAS  Google Scholar 

  47. Deng L, Ouyang X, Jin J, Ma C, Jiang Y, Zheng J, Li J, Li Y, Tan W, Yang R (2013) Anal Chem 85:8594–8600

    Article  CAS  Google Scholar 

  48. Chen X, Zu Y, Xie H, Kemasa AM, Gao Z (2011) Analyst 136:1690–1996

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Hemant P. Borase is a DST-INSPIRE fellow (Grant File No. DST/INSPIRE Fellowship/2011[149]). Chandrashekhar D. Patil is thankful to CSIR (Ref: 09/728 (0028)/2012-EMR-I) for the award of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish V. Patil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

449_2014_1200_MOESM1_ESM.tif

Supplementary 1(a) UV–Visible absorption of latex synthesized AgNPs (A) and chemically synthesized AgNPs (B) (b) Eppendorf tubes showing- intact latex (1), AgNPs synthesized by intact latex (2), Aqueous fraction of latex (3), AgNPs synthesized by aqueous fraction (4), Non-aqueous fraction of latex (5) and AgNPs synthesized by non-aqueous fraction (6) and UV–Visible absorption of AgNPs using- Rub- Rubber (non-aqueous fraction), Whole- intact latex and Aq- aqueous fraction of latex. (TIFF 814 kb)

Supplementary 2 (DOC 35 kb)

449_2014_1200_MOESM3_ESM.tif

Supplementary 3 (a) Control filter paper (A), AgNPs impregnated filter paper (B) and AgNPs impregnated filter paper dipped in Hg2+ solution (C), Photograph showing  % Hemolysis assay, red blood cells treated with- Distilled water (positive control (1). PBS saline as negative control (2), 10 % latex (3), Latex synthesized AgNPs (4) and chemically synthesized AgNPs (5) (b). (TIFF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borase, H.P., Patil, C.D., Salunkhe, R.B. et al. Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles. Bioprocess Biosyst Eng 37, 2223–2233 (2014). https://doi.org/10.1007/s00449-014-1200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1200-y

Keywords

Navigation