Skip to main content
Log in

Process optimization for increased yield of surface-expressed protein in Escherichia coli

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The autotransporter family of Gram-negative protein exporters has been exploited for surface expression of recombinant passenger proteins. While the passenger in some cases was successfully translocated, a major problem has been low levels of full-length protein on the surface due to proteolysis following export over the cytoplasmic membrane. The aim of the present study was to increase the surface expression yield of the model protein SefA, a Salmonella enterica fimbrial subunit with potential for use in vaccine applications, by reducing this proteolysis through process design using Design of Experiments methodology. Cultivation temperature and pH, hypothesized to influence periplasmic protease activity, as well as inducer concentration were the parameters selected for optimization. Through modification of these parameters, the total surface expression yield of SefA was increased by 200 %. At the same time, the yield of full-length protein was increased by 300 %, indicating a 33 % reduction in proteolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Benhar I (2001) Biotechnological applications of phage and cell display. Biotechnol Adv 19:1–33

    Article  CAS  Google Scholar 

  2. Samuelson P, Gunneriusson E, Nygren P-Å, Ståhl S (2002) Display of proteins on bacteria. J Biotechnol 96:129–154

    Article  CAS  Google Scholar 

  3. Chen W, Georgiou G (2002) Cell-Surface display of heterologous proteins: from high-throughput screening to environmental applications. Biotechnol Bioeng 79:496–503

    Article  CAS  Google Scholar 

  4. Benz I, Schmidt MA (2011) Structures and functions of autotransporter proteins in microbial pathogens. Int J Med Microbiol 301:461–468

    Article  CAS  Google Scholar 

  5. Henderson IR, Navarro-Garcia F, Nataro JP (1998) The great escape: structure and function of the autotransporter proteins. Trends Microbiol 6:370–378

    Article  CAS  Google Scholar 

  6. Renn JP, Junker M, Besingi RN et al (2012) ATP-independent control of autotransporter virulence protein transport via the folding properties of the secreted protein. Chem Biol 19:287–296

    Article  CAS  Google Scholar 

  7. Klauser T, Pohlner J, Meyer TF (1990) Extracellular transport of cholera toxin B subunit using Neisseria IgA protease beta-domain: conformation-dependent outer membrane translocation. EMBO J 9:1991–1999

    CAS  Google Scholar 

  8. Jose J, Bernhardt R, Hannemann F (2001) Functional display of active bovine adrenodoxin on the surface of E. coli by chemical incorporation of the [2Fe–2S] cluster. ChemBioChem 2:695–701

    Article  CAS  Google Scholar 

  9. Jose J, Zangen D (2005) Autodisplay of the protease inhibitor aprotinin in Escherichia coli. Biochem Biophys Res Commun 333:1218–1226

    Article  CAS  Google Scholar 

  10. Nhan NT, Gonzalez de Valdivia E, Gustavsson M et al (2011) Surface display of salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb Cell Fact 10:22

    Article  Google Scholar 

  11. Oomen CJ, Van Ulsen P, Van Gelder P et al (2004) Structure of the translocator domain of a bacterial autotransporter. EMBO J 23:1257–1266

    Article  CAS  Google Scholar 

  12. Renn JP, Junker M, Clark PL (2011) Outer membrane secretion efficiency of autotransporter virulence proteins correlates with passenger domain folding properties. Biophys J 100:516

    Article  Google Scholar 

  13. Jose J, Kramer J, Klauser T et al (1996) Absence of periplasmic DsbA oxidoreductase facilitates export of cysteine-containing passenger proteins to the Escherichia coli cell surface via the Iga beta autotransporter pathway. Gene 178:107–110

    Article  CAS  Google Scholar 

  14. Junker M, Besingi RN, Clark PL (2009) Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol Microbiol 71:1323–1332

    Article  CAS  Google Scholar 

  15. Maurizi MR (1992) Proteases and protein degradation in Escherichia coli. Experientia 48:178–201

    Article  CAS  Google Scholar 

  16. Ogunniyi AD, Kotlarski I, Morona R, Manning PA (1997) Role of SefA subunit protein of SEF14 fimbriae in the pathogenesis of Salmonella enterica serovar Enteritidis. Infect Immun 65:708–717

    CAS  Google Scholar 

  17. Strindelius L, Filler M, Sjöholm I (2004) Mucosal immunization with purified flagellin from Salmonella induces systemic and mucosal immune responses in C3H/HeJ mice. Vaccine 22:3797–3808

    Article  CAS  Google Scholar 

  18. Jarmander J, Gustavsson M, Do T-H et al (2012) A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli. Microb Cell Fact 11:118

    Article  CAS  Google Scholar 

  19. Benz I, Schmidt M (1989) Adhesin (AIDA-I) Involved in Diffuse Adherence of Enteropathogenic Escherichia coli. Infect Immun 57:1506–1511

    CAS  Google Scholar 

  20. Lum M, Morona R (2012) IcsA autotransporter passenger promotes increased fusion protein expression on the cell surface. Microb Cell Fact 11:20

    Article  CAS  Google Scholar 

  21. Schumacher SD, Jose J (2012) Expression of active human P450 3A4 on the cell surface of Escherichia coli by Autodisplay. J Biotechnol 161:113–120

    Article  CAS  Google Scholar 

  22. Jong WS, Soprova Z, de Punder K et al (2012) A structurally informed autotransporter platform for efficient heterologous protein secretion and display. Microb Cell Fact 11:85

    Article  CAS  Google Scholar 

  23. Baneyx F, Ayling A, Palumbo T et al (1991) Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Appl Microbiol Biot 36:14–20

    Article  CAS  Google Scholar 

  24. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  Google Scholar 

  25. Gustavsson M, Bäcklund E, Larsson G (2011) Optimisation of surface expression using the AIDA autotransporter. Microb Cell Fact 10:72

    Article  CAS  Google Scholar 

  26. Evan GI, Lewis GK, Ramsay G, Bishop JM (1985) Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol 5:3610–3616

    CAS  Google Scholar 

  27. Prytz I, Sandén AM, Nyström T et al (2003) Fed-batch production of recombinant beta-galactosidase using the universal stress promoters uspA and uspB in high cell density cultivations. Biotechnol Bioeng 83:595–603

    Article  CAS  Google Scholar 

  28. Eriksson L, Johansson E, Kettaneh-Wold N et al (2008) Design of Experiments: principles and applications, 3rd edn. Umetrics, AB, Sweden

    Google Scholar 

  29. Sandén AM, Prytz I, Tubulekas I et al (2003) Limiting factors in Escherichia coli fed-batch production of recombinant proteins. Biotechnol Bioeng 81:158–166

    Article  Google Scholar 

  30. Neidhardt FC (1996) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington

    Google Scholar 

  31. Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates Inc, Sunderland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gustavsson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarmander, J., Janoschek, L., Lundh, S. et al. Process optimization for increased yield of surface-expressed protein in Escherichia coli . Bioprocess Biosyst Eng 37, 1685–1693 (2014). https://doi.org/10.1007/s00449-014-1141-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1141-5

Keywords

Navigation