Skip to main content
Log in

Optimization of pyrene degradation by white-rot fungus Pleurotus pulmonarius F043 and characterization of its metabolites

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Pleurotus pulmonarius F043, a fungus collected from tropical rain forest, was used to degrade pyrene, a four-rings polycyclic aromatic hydrocarbons (PAHs), in a mineral medium broth. A maximum degradation rate of pyrene (90 %) was occurred at pH 3 and the lowest degradation rate was found in the culture at pH 10 (2 %). More than 90 % pyrene degradation was achieved at pH ranged from 3 to 5, whereas the degradation rate significantly declined when the pH was >5. The degradation of pyrene increased from 2 to 96 % when the temperature rose from 4 to 25 °C. When the temperature was increased to 60 °C resulting the lowest degradation rate into 7 %. Among the agitation rates tested, 120 rpm was the best with 95 % degradation, followed by 100 rpm (90 %). The optimum agitation range for pyrene degradation by P. pulmonarius F043 was 100–120 rpm. Among all the concentrations tested, 0.5 % Tween 80 was the best with 98 % degradation, followed by 1 % Tween 80 (90 %). The optimum concentration of Tween 80 for pyrene degradation by P. pulmonarius F043 was 0.5–1 %. The degradation rate decreased, while the concentration of Tween 80 was increased. The metabolic product was found during degradation process through the identification of gentisic acid by TLC, UV-Spectrophotometer, and GC–MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zakaria MP, Takada H, Tsutsumi S, Ohno K, Yamada J, Kouno E, Kumata H (2002) Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ Sci Technol 36:1907–1918

    Article  CAS  Google Scholar 

  2. Sartoros C, Yerushalmi L, Beron P, Guiot SR (2005) Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemosphere 61:1042–1050

    Article  CAS  Google Scholar 

  3. Sudipt KS, Om VS, Rakesh KJ (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    Article  Google Scholar 

  4. Jin D, Jiang X, Jing X, Ou Z (2007) Effects of concentration, head group, and structure of surfactants on the degradation of phenanthrene. J Hazard Mat 144:215–221

    Article  CAS  Google Scholar 

  5. Heitkamp MA, Cerniglia CE (1988) Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol 54:1612–1614

    CAS  Google Scholar 

  6. Bautista LF, Sanz R, Molina MC, Gonzalez N, Sanchez D (2009) Effect of different non-ionic surfactants on the biodegradation of PAHs by diverse aerobic bacteria. Int Biodeter Biodegr 63:913–922

    Article  Google Scholar 

  7. Zhu L, Feng S (2003) Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed anionic–nonionic surfactants. Chemosphere 53:459–467

    Article  CAS  Google Scholar 

  8. Venkata Mohan S, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347–374

    Article  Google Scholar 

  9. Perelo LW (2010) Review: in situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mat 177:81–89

    Article  CAS  Google Scholar 

  10. Franzetti A, Gennaro DP, Bestetti G, Lasagni M, Pitea D, Collina E (2008) Selection of surfactants for enhancing diesel hydrocarbons-contaminated media bioremediation. J Hazard Mat 152:1309–1316

    Article  CAS  Google Scholar 

  11. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  12. Hammel KE (1997) In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford

    Google Scholar 

  13. Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by white-rot fungus Pleurotus ostreatus. App Environ Microbiol 63:2495–2501

    CAS  Google Scholar 

  14. Kariminiaae-Hamedaani HR, Sakurai A, Sakakibara M (2007) Decolorization of synthetic dyes by a new manganese peroxidase-producing white rot fungus. Dyes Pigm 72:157–162

    Article  CAS  Google Scholar 

  15. Novotny C, Erbanova P, Cajthaml T, Rothschild N, Dosoretz C, Sasek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54:850–853

    Article  CAS  Google Scholar 

  16. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  Google Scholar 

  17. Hadibarata T, Kristanti RA (2013) Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022. Bioproc Biosys Eng 36:461–468

    Article  CAS  Google Scholar 

  18. Eriksson M, Ka JO, Mohn WW (2001) Effects of low temperature and freeze-thaw cycles on hydrocarbon biodegradation in Arctic Tundra soil. Appl Environ Microbiol 67:5107–5112

    Article  CAS  Google Scholar 

  19. Leys MN, Bastiaens L, Verstraete W, Springael D (2004) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbons degradation by Mycobacterium and Sphingomonas in soil. Appl Microbiol Biotechnol 66:726–736

    Article  Google Scholar 

  20. Mohn W, Stewart RG (2000) Limiting factors for hydrocarbon biodegradation at low temperatures in Artic soils. Soil Biol Biochem 32:1161–1172

    Article  CAS  Google Scholar 

  21. Hadibarata T, Yusoff ARM, Aris A, Salmiati, Hidayat T, Kristanti RA (2012) Decolorization of azo, triphenylmethane and anthraquinone dyes by laccase of a newly isolated Armillaria sp. F022. Water Air Soil Poll 223:1045–1054

    Article  CAS  Google Scholar 

  22. Zouari-Mechichi H, Mechichi T, Dhoui A, Sayad S, Martínez AT, Martinez MJ (2006) Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microbial Technol 39:141–148

    Article  CAS  Google Scholar 

  23. Lejune R, Baron GV (1995) Effect of agitation on growth and enzyme production of Trichoderma reesei in bath fermentation. Appl Microbiol Biotechnol 43:249–258

    Article  Google Scholar 

  24. Amanullah A, Justen P, Davies A, Paul GC, Nienow AW, Thomas CR (2000) Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum. Biochem Eng J 5:109–114

    Article  Google Scholar 

  25. Li ZJ, Shukla V, Fordyce AP, Pedersen AG, Wenger KS, Marten MR (2000) Fungal morphology and fragmentation behavior in fed-batch Aspergillus oryzae fermentation at the production scale. Biotechnol Bioeng 70:300–312

    Article  CAS  Google Scholar 

  26. Hadibarata T, Kristanti RA (2013) Effect of surfactants and identification of metabolites on the biodegradation of fluoranthene by basidiomycetes fungal isolate Armillaria sp. F022. Bioproc Biosys Eng. doi:10.1007/s00449-013-1025-0

  27. Brownawell BJ, Chen H, Zhang W, Westall JC (1997) Sorption of non-ionic surfactants on sediment materials. Environ Sci Technol 31:1735–1741

    Article  CAS  Google Scholar 

  28. Fytianos K, Voudrias E, Papamichali A (1998) Behavior and fate of linear alkylbenzene sulfonate in different soils. Chemosphere 36:2741–2746

    Article  CAS  Google Scholar 

  29. Hadibarata T, Kristanti RA (2012) Identification of metabolites from benzo[a]pyrene oxidation by ligninolytic enzymes of Polyporus sp. S133. J Environ Manag 111:115–119

    Article  CAS  Google Scholar 

  30. Hadibarata T, Yusoff ARM, Aris A, Kristanti RA (2012) Identification of naphthalene metabolism by white rot fungus Armillaria sp. F022. J Environ Sci 24:728–732

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was partly financially supported by Universiti Teknologi Malaysia (02H65) and Ministry of High Education, Malaysia (4L053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hadibarata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadibarata, T., Teh, Z.C. Optimization of pyrene degradation by white-rot fungus Pleurotus pulmonarius F043 and characterization of its metabolites. Bioprocess Biosyst Eng 37, 1679–1684 (2014). https://doi.org/10.1007/s00449-014-1140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1140-6

Keywords

Navigation