Skip to main content
Log in

High-level soluble and functional expression of Trigonopsis variabilis d-amino acid oxidase in Escherichia coli

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

d-Amino acid oxidase is an important biocatalyst used in a variety of fields, and its economically justified level recombinant expression in Escherichia coli has not been established. To accomplish this, after a single Phe54Tyr substitution, fusion proteins of d-amino acid oxidase from Trigonopsis variabilis (TvDAO) with 6 × His-tags were constructed and expressed in E. coli. The effects of his-tags fusing position were revealed. Significant increase in holoenzyme percent and protein solubility made N-terminus tagged TvDAO (termed NHDAO) a suitable choice for TvDAO production. However, reduced cell growth and protein production rates were also observed for the NHDAO bearing strains. To optimize the performance of NHDAO production, changes of culture medium were tested. Finally, a production of 140 U/mL or 3.48 g active enzyme per liter which accounted for 41.4 % of the total protein, and a specific activity of 16.68 U/mg for the crude extract, were achieved in a 3.7 L fermenter in 28.5 h. This indicated a possibility for functional and economical TvDAO expression in E. coli to meet the industrial need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vijay C (2006) Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit Rev Biotechnol 26:95–120

    Article  Google Scholar 

  2. Loredano P, Laura C, Gianluca M, Silvia S, Mirella SP (2004) Catalytic properties of d-amino acid oxidase in CPC bioconversion: a comparison between proteins from different sources. Biotechnol Prog 20:467–473

    Google Scholar 

  3. Umhau S, Pollegioni L, Molla G, Diederichs K, Welte W, Pilone MS, Ghisla S (2000) The X-ray structure of d-amino acid oxidase at very high resolution identifies the chemical mechanism of flavindependent substrate dehydrogenation. Proc Natl Acad Sci 97:12463–12468

    Article  CAS  Google Scholar 

  4. Komarova NV, Golubev IV, Khoronenkova SV, Chubar TA, Tishkov VI (2012) Engineering of substrate specificity of d-amino acid oxidase from the yeast Trigonopsis variabilis: directed mutagenesis of Phe258 residue. Biochem (Mosc) 77(10):1181–1189

    Article  CAS  Google Scholar 

  5. Wong KS, Fong WP, Tsang PWK (2010) A single Phe54Tyr substitution improves the catalytic activity and thermostability of Trigonopsis variabilis d-amino acid oxidase. New Biotechnol 27:78–84

    Article  CAS  Google Scholar 

  6. Alonso J, Barredo JL, Armisén P, Díez B, Salto F, Guisan JM, García JL, Cortés E (1999) Engineering the d-amino acid oxidase from Trigonopsis variabilis to facilitate its overproduction in Escherichia coli and its downstream processing by tailor-made metal chelate supports. Enzyme Microb Technol 25:88–95

    Article  CAS  Google Scholar 

  7. Hwang TS, Fu HM, Lin LL, Hsu WH (2000) High-level expression of Trigonopsis variabilis d-amino acid oxidase in Escherichia coli using lactose as inducer. Biotechnol Lett 22:655–658

    Article  CAS  Google Scholar 

  8. Lin LL, Chien HR, Wang WC, Hwang TS, Fu HM, Hsu WH (2000) Expression of Trigonopsis variabilis d-amino acid oxidase gene in Escherichia coli and characterization of its inactive mutants. Enzyme Microb Technol 27:482–491

    Article  CAS  Google Scholar 

  9. Dib I, Stanzer D, Nidetzky B, Nidetzky B (2007) Trigonopsis variabilis d-amino acid oxidase: control of protein quality and opportunities for biocatalysis through production in Escherichia coli. Appl Environ Microbiol 73:331–333

    Article  CAS  Google Scholar 

  10. Ma XF, Yu HM, Wen C, Luo H, Li Q, Shen ZY (2009) Triple fusion of d-amino acid oxidase from Trigonopsis variabilis with polyhistidine and Vitreoscilla hemoglobin. World J Micro Biot 25:1353–1361

    Article  Google Scholar 

  11. Kim SJ, Kim NJ, Shin CH, Kim CW (2008) Optimization of culture condition for the production of d-amino acid oxidase in a recombinant Escherichia coli. Biotechnol Bioproc Eng 13:144–149

    Article  CAS  Google Scholar 

  12. Stanzer D, Mrvčić J, Križanović S, Stehlik-Tomas V, Grba S (2011) Enhancement of Trigonopsis variabilis d-Amino acid oxidase overproduction in fed-batch cultivation of E. coli. Chem Biochem Eng Q 25(4):513–517

    CAS  Google Scholar 

  13. Hou J, Liu Y, Li Q, Yang J (2013) High activity expression of d-amino acid oxidase in Escherichia coli by the protein expression rate optimization. Protein Expr Purif 88:120–126

    Article  CAS  Google Scholar 

  14. Tishkov VI, Khoronenkova SV (2005) d-Amino acid oxidase: structure, catalytic mechanism, and practical application. Biochem (Mosc) 70:40–54

    Article  CAS  Google Scholar 

  15. González FJ, Montes J, Martin F, López MC, Fermiñán E, Catalán J, Galán MA, Domínguez A (1997) Molecular cloning of TvDAO1, a gene encoding a d-amino acid oxidase from Trigonopsis variabilis and its expression in Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 13(15):1399–1408

    Article  Google Scholar 

  16. Yu J, Li DY, Zhang YJ, Yang S, Li RB, Yuan ZY (2002) High expression of Trigonopsis variabilis d-amino acid oxidase in Pichia pastoris. J Mol Catal B Enzym 18:291–297

    Article  CAS  Google Scholar 

  17. Zheng HB, Wang XL, Chen J, Zhu K, Zhao YZ, Yang YL, Yang S, Jiang WH (2006) Expression, purification, and immobilization of His-tagged d-amino acid oxidase of Trigonopsis variabilis in Pichia pastoris. Appl Microbiol Biot 70:683–698

    Article  CAS  Google Scholar 

  18. Abad S, Nahalka J, Bergler G, Arnold SA, Speight R, Fotheringham I, Nidetzky B, Glieder A (2010) Stepwise engineering of a Pichia pastoris d-amino acid oxidase whole cell catalyst. Microb Cell Fact 9:24

    Article  Google Scholar 

  19. Redo VA, Novikova EK, Él’darov MA (2011) Expression of modified oxidase of d-amino acids of Trigonopsis variabilis in methylotrophic yeasts Pichia pastoris. Prikl Biokhim Mikrobiol 47(1):39–45

    CAS  Google Scholar 

  20. Slavica A, Dib I, Nidetzky B (2005) Single-site oxidation, cysteine-108 to cysteine sulfinic acid, in d-amino acid oxidase from Trigonopsis variabilis and its structural and functional consequences. Appl Environ Microbiol 71:8061–8068

    Article  CAS  Google Scholar 

  21. Molla G, Vegezzi C, Pilone MS, Pollegioni L (1998) Overexpression in Escherichia coli of a recombinant chimeric Rhodotorula gracilis d-amino acid oxidase. Protein Expr Purif 14:289–294

    Article  CAS  Google Scholar 

  22. Alonso J, Barredo JL, Diez B, Mellado E, Salto F, Garcia JL, Cortes E (1998) d-Amino acid oxidase gene from Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217. Microbiol 144:1095–1101

    Article  CAS  Google Scholar 

  23. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  24. Liu Y, Li Q, Zhu H, Yang J (2009) High soluble expression of d-amino acid oxidase in Escherichia coli regulated by a native promoter. Appl Biochem Biotechnol 158:313–322

    Article  CAS  Google Scholar 

  25. Brock JE, Paz RL, Cottle P, Janssen GR (2007) Naturally occurring adenines within mRNA coding sequences affect ribosome binding and expression in Escherichia coli. J Bacteriol 189:501–510

    Article  CAS  Google Scholar 

  26. Gombert AK, Kilikian BV (1998) Recombinant gene expression in Escherichia coli cultivation using lactose as inducer. J Biotech 60:47–54

    Article  CAS  Google Scholar 

  27. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expres Purif 41:207–234

    Article  CAS  Google Scholar 

  28. Gleeson MA, Sudbery PE (1988) The methylotrophic yeasts. Yeast 4:1–15

    Article  CAS  Google Scholar 

  29. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763:1453–1462

    Article  Google Scholar 

  30. Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH, Weinheim

    Book  Google Scholar 

  31. Riethorst W, Reichert A (1999) An industrial view on enzymes for the cleavage of Cephalosporin C. Chimia 53:600–607

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (No. 2012CB721103), the Fundamental Research Funds for the Central Universities and the Open Funding Project of the State Key Laboratory of Bioreactor Engineering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erzheng Su or Dongzhi Wei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1297 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, S., Su, E., Ma, X. et al. High-level soluble and functional expression of Trigonopsis variabilis d-amino acid oxidase in Escherichia coli . Bioprocess Biosyst Eng 37, 1517–1526 (2014). https://doi.org/10.1007/s00449-013-1123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1123-z

Keywords

Navigation