Skip to main content
Log in

Unraveling the dha cluster in Citrobacter werkmanii: comparative genomic analysis of bacterial 1,3-propanediol biosynthesis clusters

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In natural 1,3-propanediol (PDO) producing microorganisms such as Klebsiella pneumoniae, Citrobacter freundii and Clostridium sp., the genes coding for PDO producing enzymes are grouped in a dha cluster. This article describes the dha cluster of a novel candidate for PDO production, Citrobacter werkmanii DSM17579 and compares the cluster to the currently known PDO clusters of Enterobacteriaceae and Clostridiaceae. Moreover, we attribute a putative function to two previously unannotated ORFs, OrfW and OrfY, both in C. freundii and in C. werkmanii: both proteins might form a complex and support the glycerol dehydratase by converting cob(I)alamin to the glycerol dehydratase cofactor coenzyme B12. Unraveling this biosynthesis cluster revealed high homology between the deduced amino acid sequence of the open reading frames of C. werkmanii DSM17579 and those of C. freundii DSM30040 and K. pneumoniae MGH78578, i.e., 96 and 87.5 % identity, respectively. On the other hand, major differences between the clusters have also been discovered. For example, only one dihydroxyacetone kinase (DHAK) is present in the dha cluster of C. werkmanii DSM17579, while two DHAK enzymes are present in the cluster of K. pneumoniae MGH78578 and Clostridium butyricum VPI1718.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ralston A (2008) Operons and prokaryotic gene regulation. Nat Education 1:1

    Google Scholar 

  2. Lawrence JG (2002) Shared strategies in gene organization among prokaryotes and eukaryotes. Cell 110:407–413

    Article  CAS  Google Scholar 

  3. Rocha EPC (2008) The organization of the bacterial genome. Annu Rev Genet 42:7.1–7.23

    Article  CAS  Google Scholar 

  4. Teichmann SA, Babu MM (2002) Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends Biotechnol 20:407–410

    Article  CAS  Google Scholar 

  5. Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336

    Article  CAS  Google Scholar 

  6. Liu H, Ou X, Zhou S, Liu D (2010) Microbial 1,3-propanediol, its copolymerization with terephthalate, and applications. In: Chen GQ (ed) Plastics from bacteria: natural functions and applications. Springer, Bejing

    Google Scholar 

  7. Maervoet V, Beauprez J, De Maeseneire S, Soetaert W, De Mey M (2012) Citrobacter werkmanii, a new candidate for the production of 1,3-propanediol: strain selection and carbon source optimization. Green Chem 14:2168–2178

    Article  CAS  Google Scholar 

  8. Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H, Yoshimura T, Itoh K, O’Sullivan DJ, McKay LL, Ohno H, Kikuchi J, Masaoka T, Hattori M (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15:151–161

    Article  CAS  Google Scholar 

  9. Sauvageot N, Muller C, Hartke A, Auffray Y, Laplace J-M (2002) Characterisation of the diol dehydratase pdu operon of Lactobacillus collinoides. FEMS Microbiol Lett 209:69–74

    Article  CAS  Google Scholar 

  10. Daniel R, Stuertz K, Gottschalk G (1995) Biochemical and molecular characterization of the oxidative branch of glycerol utilization by Citrobacter freundii. J Bacteriol 177:4392–4401

    CAS  Google Scholar 

  11. Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, Muir NM, Gore MG, Rice DW (2001) Glycerol dehydrogenase: structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 9:789–802

    Article  CAS  Google Scholar 

  12. Sun J, Van den Heuvel J, Soucaille P, Qu Y, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19:263–272

    Article  CAS  Google Scholar 

  13. Ma J, Campbell A, Karlin S (2002) Correlations between Shine–Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184:5733–5745

    Article  CAS  Google Scholar 

  14. Ahrens K, Menzel K, Zeng AP, Deckwer WD (1998) Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng 59:544–552

    Article  CAS  Google Scholar 

  15. Abbad-Andaloussi S, Guedon E, Spiesser E, Petitdemange H (1996) Glycerol dehydratase activity: the limiting step for 1,3-propanediol production by Clostridium butyricum DSM 5431. Lett Appl Microbiol 22:311–314

    Article  CAS  Google Scholar 

  16. Seifert C, Bowien S, Gottschalk G, Daniel R (2001) Identification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. Eur J Biochem 268:2369–2378

    Article  CAS  Google Scholar 

  17. Raynaud C, Sarcabal P, Meynial-Salles I, Croux C, Soucaille P (2003) Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proc Natl Acad Sci USA 100:5010–5015

    Article  CAS  Google Scholar 

  18. Daniel R, Boenigk R, Gottschalk G (1995) Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol 177:2151–2156

    CAS  Google Scholar 

  19. Zoraghi R, Corbin JD, Francis SH (2004) Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 65:267–278

    Article  CAS  Google Scholar 

  20. Johnson CLV, Pechonick E, Park SD, Havemann GD, Leal NA, Bobik TA (2001) Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP: cob(I)alamin adenosyltransferase gene. J Bacteriol 183:1577–1584

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for financial support in the framework of the PhD grant (B/14045/07) of Maervoet V. The research was also supported by the Multidisciplinary Research Partnership Ghent Bio-Economy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veerle E. T. Maervoet or Marjan De Mey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 887 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maervoet, V.E.T., De Maeseneire, S.L., Soetaert, W.K. et al. Unraveling the dha cluster in Citrobacter werkmanii: comparative genomic analysis of bacterial 1,3-propanediol biosynthesis clusters. Bioprocess Biosyst Eng 37, 711–718 (2014). https://doi.org/10.1007/s00449-013-1041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1041-0

Keywords

Navigation