Skip to main content
Log in

Evaluation of an electronic nose for the early detection of organic overload of anaerobic digesters

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aimed at analysing the utilization of an electronic nose (e-nose) to serve as a specific monitoring tool for anaerobic digestion process, especially for detecting organic overload. An array of non specific metal oxide semiconductor gas sensors were used to detect process faults due to organic overload events in twelve 1.8-L anaerobic semi-continuous reactors. Three different load strategies were followed: (1) a cautious organic load (1.3 gVS L−1 day−1); (2) an increasing load strategy (1.3–5.3 gVS L−1 day−1) and (3) a cautious organic load with load pulses of up to 12 gVS L−1 day−1. A first monitoring campaign was conducted with three different substrates: sucrose, maize oil and a mix of sucrose/oil during 60 days. The second campaign was run with dry sugar beet pulp for 45 days. Hotelling’s T 2 value and upper control limit to a reference set of digesters fed with a cautious OLR (1.3 gVS L−1 day−1) was used as indirect state variable of the reactors. Overload situations were identified by the e-nose apparatus with Hotelling’s T 2 values at least four times higher in magnitude than the upper control limit of 23.7. These results confirmed that the e-nose technology appeared promising for online detection of process imbalances in the domain of anaerobic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484. doi:10.1016/j.biortech.2008.12.046

    Article  CAS  Google Scholar 

  2. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940

    Article  CAS  Google Scholar 

  3. Holm-Nielsen JB (2008) Process analytical technologies for anaerobic digestion systems. PhD Thesis, Aalborg University, Esbjerg. ISBN 978-87-7606-030-5

  4. Zhang ML, Sheng GP, Mu Y, Li WH, Yu HQ, Harada H, Li YY (2009) Rapid and accurate determination of VFAs and ethanol in the effluent of an anaerobic H2-producing bioreactor using near-infrared spectroscopy. Water Res 43(7):1823–1830. doi:10.1016/j.watres.2009.01.018

    Article  CAS  Google Scholar 

  5. Hansson M, Nordberg Å, Mathisen B (2003) On-line NIR monitoring during anaerobic treatment of municipal solid waste. Water Sci Technol 48(4):9–13

    CAS  Google Scholar 

  6. Holm-Nielsen JB, Andrée H, Lindorfer H, Esbensen KH (2007) Transflexive embedded near infrared monitoring for key process intermediates in anaerobic digestion/biogas production. J Near Infrared Spectrosc 15(2):123–135. doi:10.1255/jnirs.719

    Article  CAS  Google Scholar 

  7. Holm-Nielsen JB, Lomborg CJ, Oleskowicz-Popiel P, Esbensen KH (2008) On-line near infrared monitoring of glycerol-boosted anaerobic digestion processes: evaluation of process analytical technologies. Biotechnol Bioeng 99(2):302–313. doi:10.1002/bit.21571

    Article  CAS  Google Scholar 

  8. Boe K, Batstone DJ, Steyer J-P, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water Res 44(20):5973–5980. doi:10.1016/j.watres.2010.07.043

    Article  CAS  Google Scholar 

  9. Boe K, Batstone DJ, Angelidaki I (2007) An innovative online VFA monitoring system for the anaerobic process, based on headspace gas chromatography. Biotechnol Bioeng 96(4):712–721. doi:10.1002/bit.21131

    Article  CAS  Google Scholar 

  10. Boe K, Batstone DJ, Angelidaki I (2005) Online headspace chromatographic method for measuring VFA in biogas reactor. Water Science and Technology, vols 1–2, 52nd edn

  11. Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sustain Energy Rev 15(6):3141–3155. doi:10.1016/j.rser.2011.04.026

    Article  CAS  Google Scholar 

  12. Pearce TC, Schiffman SS, Nagle HT, Gardner JW (2003) Handbook of machine olfaction: electronic nose technology. ISBN: 978-3-527-60563-7

  13. Nicolas J, Romain A-C, Andre P (2001) Chemometrics methods for the identification and the monitoring of an odour in the environment with an electronic nose. In: Sensors and chemometrics. Research Signpost, India, pp 75–90

  14. Cimander C, Bachinger T, Mandenius C-F (2002) Assessment of the performance of a fed-batch cultivation from the preculture quality using an electronic nose. Biotechnol Prog 18(2):380–386. doi:10.1021/bp010166j

    Article  CAS  Google Scholar 

  15. Cimander C, Carlsson M, Mandenius C-F (2002) Sensor fusion for on-line monitoring of yoghurt fermentation. J Biotechnol 99(3):237–248. doi:10.1016/s0168-1656(02)00213-4

    Article  CAS  Google Scholar 

  16. Lidén H, Mandenius C-F, Gorton L, Meinander NQ, Lundström I, Winquist F (1998) On-line monitoring of a cultivation using an electronic nose. Anal Chim Acta 361(3):223–231. doi:10.1016/s0003-2670(98)00035-x

    Article  Google Scholar 

  17. Bachinger T, Mandenius C-F (2001) Physiologically motivated monitoring of fermentation processes by means of an electronic nose. Chem Eng Technol 24(7):33–42

    Google Scholar 

  18. Bachinger T, Mandenius C-F (2000) Searching for process information in the aroma of cell cultures. Trends Biotechnol 18(12):494–500. doi:10.1016/s0167-7799(00)01512-2

    Article  CAS  Google Scholar 

  19. Nordberg Å, Hansson M, Sundh I, Nordkvist E, Carlsson H, Mathisen B (2000) Monitoring of a biogas process using electronic gas sensors and near-infrared spectroscopy (NIR). Water Sci Technol 41(3):1–8

    CAS  Google Scholar 

  20. Rudnitskaya A, Legin A (2008) Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes. J Ind Microbiol Biotechnol 35(5):443–451. doi:10.1007/s10295-007-0298-1

    Article  CAS  Google Scholar 

  21. Brandgård J, Sundh I, Nordberg Å, Schnürer A, Mandenius CF, Mathisen B (2001) Monitoring growth of the methanogenic archaea Methanobacterium formicicum using an electronic nose. Biotechnol Lett 23(4):241–248. doi:10.1023/a:1005643606640

    Article  Google Scholar 

  22. Nicolas J, Romain A-C, Ledent C (2006) The electronic nose as a warning device of the odour emergence in a compost hall. Sens Actuators B Chem 116(1–2):95–99. doi:10.1016/j.snb.2005.11.085

    Article  Google Scholar 

  23. Romain A-C, Godefroid D, Kuske M, Nicolas J (2005) Monitoring the exhaust air of a compost pile as a process variable with an e-nose. Sens Actuators B Chem 106(1):29–35. doi:10.1016/j.snb.2004.05.033

    Article  Google Scholar 

  24. Romain A-C, Delva J, Nicolas J (2008) Complementary approaches to measure environmental odours emitted by landfill areas. Sens Actuators B Chem 131(1):18–23. doi:10.1016/j.snb.2007.12.005

    Article  Google Scholar 

  25. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32(8):1375–1380. doi:10.1016/j.energy.2006.10.018

    Article  CAS  Google Scholar 

  26. Smet E, Van Langenhove H, De Bo I (1999) The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste. Atmos Environ 33(8):1295–1303. doi:10.1016/s1352-2310(98)00260-x

    Article  CAS  Google Scholar 

  27. James D, Scott SM, Ali Z, O’Hare WT (2005) Chemical sensors for electronic nose systems. Microchim Acta 149(1):1–17. doi:10.1007/s00604-004-0291-6

    Article  CAS  Google Scholar 

  28. Gutierrez-Osuna R (2002) Pattern analysis for machine olfaction: a review. IEEE Sens J 2(3):189–202. doi:10.1109/jsen.2002.800688

    Article  Google Scholar 

  29. Nicolas J, Romain A-C (2004) Establishing the limit of detection and the resolution limits of odorous sources in the environment for an array of metal oxide gas sensors. Sens Actuators B Chem 99(2–3):384–392. doi:10.1016/j.snb.2003.11.036

    Article  Google Scholar 

  30. De Maesschalck R, Jouan-Rimbaud D, Massart DL (2000) The Mahalanobis distance. Chemom Intell Lab Syst 50(1):1–18. doi:10.1016/s0169-7439(99)00047-7

    Article  Google Scholar 

  31. Chynoweth DP, Svoronos SA, Lyberatos G, Harman JL, Pullammanappallil P, Owens JM, Peck MJ (1994) Real-time expert-system control of anaerobic-digestion. Water Sci Technol 30(12):21–29

    CAS  Google Scholar 

  32. Björnsson L, Murto M, Jantsch TG, Mattiasson B (2001) Evaluation of new methods for the monitoring of alkalinity, dissolved hydrogen and the microbial community in anaerobic digestion. Water Res 35(12):2833–2840. doi:10.1016/s0043-1354(00)00585-6

    Article  Google Scholar 

  33. Hickey RF, Vanderwielen J, Switzenbaum MS (1989) The effect of heavy metals on methane production and hydrogen and carbon monoxide levels during batch anaerobic sludge digestion. Water Res 23(2):207–218. doi:10.1016/0043-1354(89)90045-6

    Article  CAS  Google Scholar 

  34. Switzenbaum MS, Giraldo-Gomez E, Hickey RF (1990) Monitoring of the anaerobic methane fermentation process. Enzyme Microb Technol 12(10):722–730. doi:10.1016/0141-0229(90)90142-d

    Article  CAS  Google Scholar 

  35. Kamatali P, Teller E, Vanbelle M, Delfosse P, Foulon M, Collignon G (1990) Complémentation d’un ensilage d’herbe par des pulpes de betteraves: effet sur les quantités ingérées, les activités alimentaires et méryciques, et la digestion chez les génisses. Ann Zootech 39(2):113–124. doi:http://dx.doi.org/10.1051/animres:19900203

  36. Teller E, Vanbelle M, Kamatali P, Collignon G, Delfosse P, Hadjiandreou S (1990) Differences between animals and effect of basal diet for the “in situ” degradability of grass silage. J Anim Physiol Anim Nutr 64(1–5):233–239. doi:10.1111/j.1439-0396.1990.tb00228.x

    Article  Google Scholar 

  37. Ahring B, Sandberg M, Angelidaki I (1995) Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol 43(3):559–565. doi:10.1007/bf00218466

    Article  CAS  Google Scholar 

  38. Björnsson L, Murto M, Mattiasson B (2000) Evaluation of parameters for monitoring an anaerobic co-digestion process. Appl Microbiol Biotechnol 54(6):844–849. doi:10.1007/s002530000471

    Article  Google Scholar 

  39. Nielsen HB, Uellendahl H, Ahring BK (2007) Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy 31(11–12):820–830. doi:10.1016/j.biombioe.2007.04.004

    Article  CAS  Google Scholar 

  40. Ward AJ, Bruni E, Lykkegaard MK, Feilberg A, Adamsen APS, Jensen AP, Poulsen AK (2011) Real time monitoring of a biogas digester with gas chromatography, near-infrared spectroscopy, and membrane-inlet mass spectrometry. Bioresour Technol 102(5):4098–4103. doi:10.1016/j.biortech.2010.12.052

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Fonds National de la Recherche Luxembourg (FNR) for the AFR doctoral grant (TR-PHD-BFR08/117). The research was partly realized in the framework of the Interreg IVA OPTIBIOGAZ project (001/GR/2/3/003), which is co-financed by the European Union through the FEDER for the INTERREG IVa program. The authors are most thankful to Marcel Nickers from the ASBL Au Pays de l’Attert for his never-ending support to agricultural biomethanation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Delfosse.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1136 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adam, G., Lemaigre, S., Romain, AC. et al. Evaluation of an electronic nose for the early detection of organic overload of anaerobic digesters. Bioprocess Biosyst Eng 36, 23–33 (2013). https://doi.org/10.1007/s00449-012-0757-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0757-6

Keywords

Navigation