Skip to main content
Log in

Production, characterization and antioxidant activity of exopolysaccharides from submerged culture of Morchella crassipes

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The aim of this work was to investigate the fermentation optimization, molecular characterization, and antioxidant activity in vitro of exopolysaccharides (EPS) from Morchella crassipes in submerged culture. Firstly, an optimal medium for EPS production was obtained by single-factor experiment and central composite design as follows: maltose 44.79 g/L and tryptone 4.21 g/L. Then, one fraction of EPS was obtained from the culture filtrates by size exclusion chromatography and the molecular characteristics were examined by a multi-angle laser light scattering and refractive index detector system. The weight-average molar mass and the polydispersity ratio of the EPS fraction were revealed to be 1.961 × 104 g/mol and 1.838, respectively. FT-IR spectroscopy was used for obtaining vibrational spectra of the purified EPS fraction. Finally, the antioxidant activity of EPS was investigated and the relationship with molecular properties was discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sutherland I (2002) A sticky business. Microbial polysaccharides: current products and future trend. Microbiol Today 29:70–71

    Google Scholar 

  2. Wasser S (2002) Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60(3):258–274

    Article  CAS  Google Scholar 

  3. Kim DH, Yang BK, Jeong SC, Park JB, Cho SP, Das S, Yun JW, Song CH (2001) Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus. Biotechnol Lett 23:513–517

    Article  CAS  Google Scholar 

  4. Prasad P, Chauhan K, Kandari LS, Maikhuri RK, Purohit A, Bhatt RP, Rao KS (2002) Morchella esculenta (Guchhi): need for scientific intervention for its cultivation in Central Himalaya. Curr Sci 82:1098–1100

    Google Scholar 

  5. Mau J, Chang C, Huang S, Chen C (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87:111–118

    Article  CAS  Google Scholar 

  6. Nitha B, Meera CR, Janardhanan KK (2007) Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Curr Sci 92:235–239

    Google Scholar 

  7. Peng Y, Zhang L, Zeng F, Kennedy JK (2004) Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium. Carbohydr Polym 59:385–392

    Article  Google Scholar 

  8. Sun HH, Mao WJ, Chen Y, Guo SD, Li HY, Qi XH, Chen YL, Xu J (2009) Isolation, chemical characteristics and antioxidant properties of the polysaccharides from marine fungus Penicillium sp. F23-2. Carbohydr Polym 78:117–124

    Article  CAS  Google Scholar 

  9. Yoon S, Hong E, Kim S, Lee P, Kim M, Yang H, Ryu Y (2012) Optimization of culture medium for enhanced production of exopolysaccharide from Aureobasidium pullulans. Bioprocess Biosyst Eng 35:167–172

    Article  CAS  Google Scholar 

  10. Sun YX, Liu JC, Kennedy JF (2010) Application of response surface methodology for optimization of polysaccharides production parameters from the roots and Codonopsis pilosula by a central composite design. Carbohydr Polym 78:949–953

    Article  Google Scholar 

  11. Giovanni M (1983) Response surface methodology and product optimization. Food Technol Chic 37:41–45

    Google Scholar 

  12. Park JP, Kim SW, Hwang HJ, Yun JW (2001) Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer production by Cordyceps militaris. Lett Appl Microbiol 33:76–81

    Article  CAS  Google Scholar 

  13. Bae JT, Sinha J, Park JP, Song CH, Yun JW (2000) Optimization of submerged culture conditions for exo-biopolymer production by Paecilomyces japonica. J Microbiol Biotechnol 10:482–487

    CAS  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  15. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  16. Jumel K, Fiebrig I, Harding SE (1996) Rapid size distribution and purity analysis of gastric mucus glycoproteins by size exclusion chromatography/multi angle laser light scattering. Int J Biol Macromol 18:133–139

    Article  CAS  Google Scholar 

  17. Wyatt PJ (1993) Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 272:1–40

    Article  CAS  Google Scholar 

  18. Lim JM, Joo JH, Kim HO, Kim HM, Kim SW, Hwang HJ, Yun JW (2005) Structural analysis and molecular characterization of exopolysaccharides produced by submerged mycelial culture of Collybia maculata TG-1. Carbohydr Polym 61:296–303

    Article  CAS  Google Scholar 

  19. Eloff JN, Katerere DR, McGaw LJ (2008) The biological activity and chemistry of the southern African Combretaceae. J Ethnopharmacol 119:686–699

    Article  CAS  Google Scholar 

  20. Zhao J, Gui LN, Sun JM, Cao Y, Zhang H (2010) Antioxidative activity of polysaccharide fractions isolated from Tricholoma Matsutake sing. with ultrafiltration. J Life Sci 4(3):17–20

    CAS  Google Scholar 

  21. Leung PH, Zhao SN, Ho KP, Wu JY (2009) Chemical properties and antioxidant activity of exopolysaccharides from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 114:1251–1256

    Article  CAS  Google Scholar 

  22. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  Google Scholar 

  23. Li Y, Weiss WF IV, Roberts CJ (2009) Characterization of high-molecular-weight nonnative aggregates and aggregation kinetics by size exclusion chromatography with inline multi-angle laser light scattering. J Pharm Sci 98:3997–4016

    Article  CAS  Google Scholar 

  24. Hwang HJ, Kim SW, Xu CP, Choi JW, Yun JW (2003) Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus. J Appl Microbiol 94:708–719

    Article  CAS  Google Scholar 

  25. Luo J, Liu J, Sun Y, Ye H, Zhou C, Zeng X (2010) Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilát. Carbohydr Polym 81:533–540

    Article  CAS  Google Scholar 

  26. Hu Y, Xu J, Hu Q (2003) Evaluation of antioxidant potential of Aloe vera (Aloe barbadensis Miller) extracts. J Agric Food Chem 51:7788–7791

    Article  CAS  Google Scholar 

  27. Wang ZJ, Luo DH (2007) Antioxidant activities of different fractions of polysaccharide purified from Gynostemma pentaphyllum Makino. Carbohydr Polym 68:54–58

    Article  CAS  Google Scholar 

  28. Sakanaka S, Tachibana Y, Okada Y (2005) Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem 89:569–575

    Article  CAS  Google Scholar 

  29. Liu W, Wang H, Pang X, Yao W, Gao X (2010) Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. Int J Biol Macromol 46:451–457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunping Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, P., Geng, L., Mao, D. et al. Production, characterization and antioxidant activity of exopolysaccharides from submerged culture of Morchella crassipes . Bioprocess Biosyst Eng 35, 1325–1332 (2012). https://doi.org/10.1007/s00449-012-0720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0720-6

Keywords

Navigation