Skip to main content
Log in

Modeling nitrate-nitrogen removal process in first-flush reactor for stormwater treatment

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Stormwater runoff is one of the most common non-point sources of water pollution to rivers, lakes, estuaries, and coastal beaches. While most pollutants and nutrients, including nitrate-nitrogen, in stormwater are discharged into receiving waters during the first-flush period, no existing best management practices (BMPs) are specifically designed to capture and treat the first-flush portion of urban stormwater runoff. This paper presents a novel BMP device for highway and urban stormwater treatment with emphasis on numerical modeling of the new BMP, called first-flush reactor (FFR). A new model, called VART-DN model, for simulation of denitrification process in the designed first-flush reactor was developed using the variable residence time (VART) model. The VART-DN model is capable of simulating various processes and mechanisms responsible for denitrification in the FFR. Based on sensitivity analysis results of model parameters, the denitrification process is sensitive to the temperature correction factor (b), maximum nitrate-nitrogen decay rate (K max), actual varying residence time (T v), the constant decay rate of denitrifiying bacteria (v dec), temperature (T), biomass inhibition constant (K b), maximum growth rate of denitrifiying bacteria (v max), denitrifying bacteria concentration (X), longitudinal dispersion coefficient (K s), and half-saturation constant of dissolved carbon for biomass (K Car-X); a 10% increase in the model parameter values causes a change in model root mean square error (RMSE) of −28.02, −16.16, −12.35, 11.44, −9.68, 10.61, −16.30, −9.27, 6.58 and 3.89%, respectively. The VART-DN model was tested using the data from laboratory experiments conducted using highway stormwater and secondary wastewater. Model results for the denitrification process of highway stormwater showed a good agreement with observed data and the simulation error was less than 9.0%. The RMSE and the coefficient of determination for simulating denitrification process of wastewater were 0.5167 and 0.6912, respectively, demonstrating the efficacy of the VART-DN model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thurston KA (1999) Lead and petroleum hydrocarbon changes in an urban wetland receiving stormwater runoff. Ecol Eng 12(3–4):387–399

    Article  Google Scholar 

  2. Ngabe B, Bidleman TF, Scott GI (2000) Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina. Sci Total Environ 255(1–3):1–9

    Article  CAS  Google Scholar 

  3. Deng ZQ, Lima JLMP, Singh VP (2005) Fractional kinetic model for first-flush of stormwater pollutants. J Environ Eng 131(2):232–241

    Article  CAS  Google Scholar 

  4. Deletic AB, Maksumovic CT (1998) Evaluation of water quality factors in storm runoff from paved areas. J Environ Eng 124(9):869–879

    Article  CAS  Google Scholar 

  5. Gupta K, Saul AJ (1996) Specific relationships for the first flush load in combined sewer flows. Water Res 30(5):1244–1252

    Article  CAS  Google Scholar 

  6. USEPA (1995) Combined sewer overflows: guidance for nine minimum controls. (EPA 832–B–95–003)

  7. Walker WJ, McNutt RP, Maslanka CAK (1999) The potential contribution of urban runoff to surface sediments of the Passaic river: sources and chemical characteristics. Chemosphere 38(2):363–377

    Article  CAS  Google Scholar 

  8. Baker L, Hope D, Xu Y, Edmonds J, Lauver L (2001) Nitrogen balance for the Central Arizona–Phoenix (CAP) ecosystem. Ecosystems 4(6):582–602

    Article  CAS  Google Scholar 

  9. Dreelin EA, Fowler L, Carroll CR (2006) A test of porous pavement effectiveness on clay soils during natural storm events. Water Res 40(4):799–805

    Article  CAS  Google Scholar 

  10. Hunt WF, Smith JT, Jadlocki SJ, Hathaway JM, Eubanks PR (2007) Pollutant removal and peak flow mitigation by a bioretention cell in urban charlotte NC. J Environ Eng 134(5):403–408

    Article  Google Scholar 

  11. Lee MS, Lee KK, Hyun Y, Clement TP, Hamilton D (2006) Nitrogen transformation and transport modeling in groundwater aquifers. Ecol Model 192(1–2):143–159

    Article  CAS  Google Scholar 

  12. Deng ZQ, Jung HS (2009) Scaling dispersion model for pollutant transport in rivers. Environ Model Software 24(5):627–631

    Article  Google Scholar 

  13. Deng ZQ, Jung HS, Ghimire B (2010) Effect of channel size on solute residence time distributions in rivers. Adv Water Resour 33(9):1118–1127

    Article  Google Scholar 

  14. Jung HS, Deng ZQ (2010) Modeling of nitrogen retention in Amite River. Water Air Soil Pollut 215(1–4):411–425

    Google Scholar 

  15. Adrian DD, Sanders TG (1998) Oxygen sag equation for second-order BOD decay. Wat Res 32(3):840–848

    Article  CAS  Google Scholar 

  16. Eljamal O, Jinno K, Hosokawa T (2009) Modeling of solute transport and biological sulfate reduction using low cost electron donor. Environ Geol 56(8):1605–1613

    Article  CAS  Google Scholar 

  17. Eljamal O, Jinno K, Hosokawa T (2008) Modeling of solute transport with bioremediation processes using sawdust as a matrix. Water Air Soil Pollut 195(1–4):115–127

    Article  CAS  Google Scholar 

  18. Hantush MM, Mariño MA (1998) Inter-layer diffusive transfer and transport of contaminants in stratified formation: 1. Theory. J. Hydrol. Engrng. 3(4):232–240

    Article  Google Scholar 

  19. MacQuarrie KTB, Sudicky EA (2001) Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: I. Model formulation and performance. J. Contam. Hydrol. 47(1):53–84

    Article  CAS  Google Scholar 

  20. Molz FJ, Widdowson MA, Benefield LD (1986) Simulation of microbial grouth dynamics coupled to nutrient and oxygen transport in porous media. Water Resour Res 22(8):1207–1216

    Article  CAS  Google Scholar 

  21. Widdowson MA, Molz FJ, Benefield LD (1988) A numerical transport model for oxygen- and nitrate-based respiration linked to substrate and nutrient availability in porous media. Water Resour Res 24(9):1553–1565

    Article  CAS  Google Scholar 

  22. Vinten AJA, Castle K, Arah JRM (1996) Field evaluation of models of denitrification linked to nitrate leaching for aggregated soil. Eur J Soil Sci 47(3):305–317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the funding support for this research by the Louisiana Transportation Research Center and LaSPACE NASA grant through LA BoR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Deng.

Appendix A. Numerical solution of VART-DN model

Appendix A. Numerical solution of VART-DN model

A split-operator method is utilized to split Eq. 2a into a pure advection equation and a dispersion equation with the transient storage term. The pure advection process in Eq. 2a can be simulated by the hyperbolic sub-equation A1:

$$ \frac{\partial N}{\partial t} + U\frac{\partial N}{\partial x} = 0,\;\quad t \in \left( {t^{n + 1} ,t^{n + 1/2} } \right) $$
(A1)

where n represents the time step. Eq. A1 can be solved using Semi-Lagrangian approach. The dispersion, transient storage release processes, and denitrification processes in Eqs. 2a and 2b can be simulated by following discretized equation:

$$ \begin{aligned} \frac{{N_{{{\text{M}}i}}^{n + 1} - N_{{{\text{M}}i}}^{n + 1/2} }}{\Updelta t/2} & = \frac{{K_{\text{s}} }}{{(\Updelta x)^{2} }}\left( {N_{{{\text{M}}i + 1}}^{n + 1} - 2N_{{{\text{M}}i}}^{n + 1} + N_{{{\text{M}}i - 1}}^{n + 1} } \right) + \frac{R}{{T_{\text{v}} }}\left( {\frac{{N_{{{\text{B}}i}}^{n + 1} + N_{{{\text{B}}i}}^{n + 1/2} }}{2} - \frac{{N_{{{\text{M}}i}}^{n + 1} + N_{{{\text{M}}i}}^{n + 1/2} }}{2}} \right) \\ \quad \; - K_{{{\text{R}}i}}^{n + 1} \frac{{N_{{{\text{M}}i}}^{n + 1} + N_{{{\text{M}}i}}^{n + 1/2} }}{2} \\ \end{aligned} $$
(A2)
$$ \frac{{N_{{{\text{B}}i}}^{n + 1} - N_{{{\text{B}}i}}^{n + 1/2} }}{\Updelta t/2} = \frac{1}{{T_{\text{V}} }}\left( {\frac{{N_{{{\text{M}}i}}^{n + 1} + N_{{{\text{M}}i}}^{n + 1/2} }}{2} - \frac{{N_{{{\text{B}}i}}^{n + 1} + N_{{{\text{B}}i}}^{n + 1/2} }}{2}} \right) - K_{{{\text{R}}i}}^{n + 1} \left( {\frac{{N_{{{\text{B}}i}}^{n + 1} + N_{{{\text{B}}i}}^{n + 1/2} }}{2}} \right) $$
(A3)
$$ N_{{{\text{B}}i}}^{n + 1} = \frac{{\Updelta t\left( {N_{{{\text{M}}i}}^{n + 1} + N_{{{\text{M}}i}}^{n + 1/2} } \right) - \left( {\Updelta t + \Updelta tT_{\text{V}} K_{\text{R}} - 4T_{\text{V}} } \right)N_{{{\text{B}}i}}^{n + 1/2} }}{{4T_{\text{V}} + \Updelta t + \Updelta tK_{\text{R}} T_{\text{V}} }} $$
(A4)

where R = (A Mob + A Bio)/A, the ratio of biomass phase area and mobile phase area to the surface area of reactor, N M is nitrate-nitrogen concentration in mobile phase, and N B is nitrate-nitrogen concentration in biomass phase.

Eq. 2e can be discretized as follows:

$$ \frac{{C_{{{\text{O}}_{ 2i} }}^{n + 1} - C_{{{\text{O}}_{ 2i} }}^{n + 1/2} }}{\Updelta t/2} = - K_{1} C_{\text{Car}} \left( {\frac{{C_{{{\text{O}}_{ 2i} }}^{n + 1} + C_{{{\text{O}}_{ 2i} }}^{n + 1/2} }}{2}} \right) $$
(A5)
$$ C_{{{\text{O}}_{2i} }}^{n + 1} = \frac{{\left( {4 - \Updelta tK_{1} C_{\text{Car}} } \right)C_{{{\text{O}}_{2i} }}^{n + 1/2} }}{{\left( {4 + \Updelta tK_{1} C_{\text{Car}} } \right)}} .$$
(A6)

Eq. 2d can be discretized as follows:

$$ \frac{{X_{i}^{n + 1} - X_{i}^{n + 1/2} }}{\Updelta t/2} = \left( {v_{\max } \frac{{\left( {N{}_{{{\text{B}}i}} + N{}_{{{\text{M}}i}}} \right)}}{{K_{\text{N}} + \left( {N{}_{{{\text{B}}i}} + N{}_{{{\text{M}}i}}} \right)}} \times \frac{{C_{\text{Car}} }}{{K_{\text{Car - X}} + C_{\text{Car}} }} - v_{\text{dec}} } \right) \times \frac{{\left( {X_{i}^{n + 1} + X_{i}^{n + 1/2} } \right)}}{2} $$
(A7)
$$ \mu = \left( {v_{\max } \frac{{\left( {N{}_{{{\text{B}}i}} + N{}_{{{\text{M}}i}}} \right)}}{{K_{\text{N}} + \left( {N{}_{{{\text{B}}i}} + N{}_{{{\text{M}}i}}} \right)}} \cdot \frac{{C_{\text{Car}} }}{{K_{\text{Car - X}} + C_{\text{Car}} }} - v_{\text{dec}} } \right) $$
(A8)
$$ \left( {\frac{4}{\Updelta t} - \mu } \right)X_{i}^{n + 1} = \left( {\frac{4}{\Updelta t} + \mu } \right)X_{i}^{n + 1/2} $$
(A9)
$$ X_{i}^{n + 1} = \left( {\frac{4 + \mu }{4 - \mu }} \right)X_{i}^{n + 1/2} $$
(A10)

Eq. 2c can be discretized as follows:

$$ K_{{{\text{R}}i}}^{n + 1} = K_{\text{Max}} \left[ {\frac{{X_{i}^{n + 1} }}{{K_{\text{b}} + X_{i}^{n + 1} }}} \right]\left[ {\frac{{K_{{{\text{O}}_{2} }} }}{{K_{{{\text{O}}_{2} }} + C_{{{\text{O}}_{2i} }}^{n + 1} }}} \right]\left[ {\frac{{C_{\text{Car}} }}{{K_{\text{Car}} + C_{\text{Car}} }}} \right]b^{{\left( {T - 20} \right)}} $$
(A11)
$$ K_{{\text{Ri}}^{n + 1}} = K_{\text{Max}} \left[ {\frac{{\left( {\frac{4 + \mu }{4 - \mu }} \right)X_{i}^{n + 1/2} }}{{K_{\text{b}} + \left( {\frac{4 + \mu }{4 - \mu }} \right)X_{i}^{n + 1/2} }}} \right]\left[ {\frac{{K_{{\text{O}_{2}}}}}{{K_{{\text{O}_{2} }} + \frac{{\left( {4 - \Updelta tK_{1} C_{\text{Car}} } \right)C_{{{\text{O}}_{2i} }}^{n + 1/2} }}{{\left( {4 + \Updelta tK_{1} C_{\text{Car}} } \right)}}}}} \right] \times \left[ {\frac{{C_{\text{Car}} }}{{K_{\text{Car}} + C_{\text{Car}} }}} \right]b^{{\left( {T - 20} \right)}} $$
(A12)

Rearranging Eq. A2 produces

$$ \begin{gathered} \left( {\frac{2}{\Updelta t} + 2\frac{{K_{\text{s}} }}{{(\Updelta x)^{2} }} + \frac{R}{{2T_{\text{v}} }} + \frac{{K_{{{\text{R}}i}}^{n + 1} }}{2}} \right)N_{{{\text{M}}i}}^{n + 1} + \frac{{K_{\text{s}} }}{{(\Updelta x)^{2} }}N_{{{\text{M}}i + 1}}^{n + 1} - \frac{{K_{\text{s}} }}{{(\Updelta x)^{2} }}N_{{{\text{M}}i - 1}}^{n + 1} \hfill \\ = \left( {\frac{2}{\Updelta t} - \frac{R}{{2T_{\text{v}} }} - \frac{{K_{{{\text{R}}i}}^{n + 1} }}{2}} \right)N_{{{\text{M}}i}}^{n + 1/2} + \frac{R}{2T}N_{{{\text{B}}i}}^{n + 1} + \frac{R}{{2T_{\text{v}} }}N_{{{\text{B}}i}}^{n + 1/2} \hfill \\ \end{gathered} $$
(A13)

Finally, the numerical solution to VART-DN model can be expressed as

$$ \begin{aligned}& \left( \frac{2}{\Updelta t} + 2\frac{{K_{\text{s}} }}{{(\Updelta x)^{2} }} + \frac{{A_{\text{Mob}} + A_{\text{Bio}} }}{{2AT_{\text{v}} }} + \frac{1}{2}K_{\text{Max}} \left[ {\frac{{\left( {\frac{4 + \mu }{4 - \mu }} \right)X_{i}^{n + 1/2} }}{{K_{\text{b}} + \left( {\frac{4 + \mu }{4 - \mu }} \right)X_{i}^{n + 1/2} }}} \right]\right. \\ & \qquad \times \left. \left[ {\frac{{K_{{{\text{O}}_{2} }} }}{{K_{{{\text{O}}_{2} }} + \frac{{\left( {4 - \Updelta tK_{1} C_{\text{Car}} } \right)C_{{{\text{O}}_{2i} }}^{n + 1/2} }}{{\left( {4 + \Updelta tK_{1} C_{\text{Car}} } \right)}}}}} \right]\left[ {\frac{{C_{\text{Car}} }}{{K_{\text{Car}} + C_{\text{Car}} }}} \right]b^{{\left( {T - 20} \right)}} \right)N_{{{\text{M}}i}}^{n + 1} \hfill \\&\qquad + \frac{{K_{\text{s}} }}{{(\Updelta x)^{2} }}N_{{{\text{M}}i + 1}}^{n + 1} - \frac{{K_{\text{s}} }}{{(\Updelta x)^{2} }}N_{{{\text{M}}i - 1}}^{n + 1} \hfill \\ & \quad= \left( \frac{2}{\Updelta t} - \frac{{A_{\text{Mob}} + A_{\text{Bio}} }}{{2AT_{\text{v}} }} - \frac{1}{2}K_{\text{Max}} \left[ {\frac{{\left( {\frac{4 + \mu }{4 - \mu }} \right)X_{i}^{n + 1/2} }}{{K_{\text{b}} + \left( {\frac{4 + \mu }{4 - \mu }} \right)X_{i}^{n + 1/2} }}} \right] \right.\\ & \qquad\left.\times\left[ {\frac{{K_{{{\text{O}}_{2} }} }}{{K_{{{\text{O}}_{2} }} + \frac{{\left( {4 - \Updelta tK_{1} C_{\text{Car}} } \right)C_{{{\text{O}}_{2i} }}^{n + 1/2} }}{{\left( {4 + \Updelta tK_{1} C_{\text{Car}} } \right)}}}}} \right]\left[ {\frac{{C_{\text{Car}} }}{{K_{\text{Car}} + C_{\text{Car}} }}} \right]b^{{\left( {T - 20} \right)}} \right)N_{{{\text{M}}i}}^{n + 1/2} \hfill \\&\qquad + \frac{{A_{\text{Mob}} + A_{\text{Bio}} }}{{2AT_{\text{v}} }}\frac{{\Updelta t\left( {N_{{{\text{M}}i}}^{n + 1} + N_{{{\text{M}}i}}^{n + 1/2} } \right) - \left( {\Updelta t + \Updelta tT_{\text{V}} K_{\text{R}} - 4T_{\text{V}} } \right)N_{{{\text{B}}i}}^{n + 1/2} }}{{4T_{\text{V}} + \Updelta t + \Updelta tK_{\text{R}} T_{\text{V}} }} \\ & \qquad + \frac{{A_{\text{Mob}} + A_{\text{Bio}} }}{{2AT_{\text{v}} }}N_{{{\text{B}}i}}^{n + 1/2}. \hfill \\ \end{aligned} $$
(A14)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Z., Sun, S. & Gang, D.D. Modeling nitrate-nitrogen removal process in first-flush reactor for stormwater treatment. Bioprocess Biosyst Eng 35, 865–874 (2012). https://doi.org/10.1007/s00449-011-0671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0671-3

Keywords

Navigation