Skip to main content
Log in

Customized design of electronic noses placed on top of air-lift bioreactors for in situ monitoring the off-gas patterns

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A specially designed electronic nose was coupled to an air-lift bioreactor in order to perform on-line monitoring of released vapors. The sensor array was placed at the top of the bioreactor sensing the headspace in equilibrium with the evolving liquor at any time without the need of aspiration and pumping of gases into a separated sensor chamber. The device was applied to follow the off-gas of a bioreactor with Acidithiobacillus thiooxidans grown on beds of elemental sulfur under aerobic conditions. Evolution was monitored by acid titration, pH and optical density measurements. The electronic nose was capable to differentiate each day of reactor evolution since inoculation within periods marked off culture medium replacements using multivariate data analysis. Excellent discrimination was obtained indicating the potentiality for on-line monitoring in non-perturbed bioreactors. The prospects for electronic nose/bioreactor merging are valuable for whatever the bacterial strain or consortium used in terms of scent markers to monitor biochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caccavale F, Iamarino M, Pierri F, Tufano V (2011) Control and monitoring of chemical batch reactors. Springer, London

    Book  Google Scholar 

  2. Bendriaa L, Picart P, Daniel P, Horry H, Durand MJ, Thouand G (2004) Versatile device for on-line and in situ measurement of growth and light production of bioluminescent cells. Sens Actuators B Chem 103:115–121

    Article  Google Scholar 

  3. Bartlett PN, Gardner JW (1999) Electronic noses: principles and applications. Oxford University Press, Oxford

    Google Scholar 

  4. Buczkowskaa A, Witkowskaa E, Górski Ł, Zamojskab A, Szewczykb KW, Wróblewski W, Cioseka P (2010) The monitoring of methane fermentation in sequencing batch bioreactor with flow-through array of miniaturized solid state electrodes. Talanta 81:1387–1392

    Article  Google Scholar 

  5. Soderstrom C, Rudnitskaya A, Legin A, Krantz-Rulcker C (2005) Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques. J Biotechnol 119:300–308

    Article  CAS  Google Scholar 

  6. Kim N, Park K, Park IS, Cho YJ, Bae YM (2005) Application of a taste evaluation system to the monitoring of Kimchi fermentation. Biosens Bioelectron 20:2283–2291

    Article  CAS  Google Scholar 

  7. Legin A, Kirsanov D, Rudnitskaya A, Iversen JJL, Seleznev B, Esbensen KH, Mortensen J, Houmøller LP, Vlasov Y (2004) Multicomponent analysis of fermentation growth media using the electronic tongue. Talanta 64:766–772

    Article  CAS  Google Scholar 

  8. Ahring B, Sandberg M, Angelidaki I (1995) Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl Microbiol Biotechnol 43:559–565

    Article  CAS  Google Scholar 

  9. Moletta R, Escoffier Y, Ehrlinger F, Coudert JP, Leyris JP (1994) On-line automatic control system for monitoring an anaerobic fluidized-bead reactor: response to organic overload. Water Sci Technol 30:11–20

    CAS  Google Scholar 

  10. Bhattacharya N, Tudu B, Jana A, Ghosha D, Bandhopadhyaya R, Bhuyanc M (2008) Preemptive identification of optimum fermentation time for black tea using electronic nose. Sens Actuators B Chem 131:110–116

    Article  Google Scholar 

  11. Rudnitskaya A, Legin A (2008) Sensor systems, electronic tongues and electronic noses, for the monitoring of biotechnological processes. J Ind Microbiol Biotechnol 35:443–451

    Article  CAS  Google Scholar 

  12. Maciejewska M, Szczurek A, Kerenyi Z (2006) Utilization of first principal component extracted from gas sensor measurements as a process control variable in wine fermentation. Sens Actuators B Chem 115:170–177

    Article  Google Scholar 

  13. Pavlou AK, Magan NJ, Jones M, Brown J, Klatser P, Turner APF (2004) Detection of Mycobacterium tuberculosis (TB) in vitro and in situ, using an electronic nose in combination with a neural network system. Biosens Bioelectron 20:538–544

    Article  CAS  Google Scholar 

  14. Clemente JJ, Monteiro SMS, Carrondo MJT, Cunha AE (2008) Predicting sporulation events in a bioreactor using an electronic nose. Biotechnol Bioeng 101:545–552

    Article  CAS  Google Scholar 

  15. Kreij K, Mandenius CF, Clemente JJ, Cunha AE, Monteiro SMS, Carrondo MJT, Hesse F, Bassani Molinas MM, Wagner R, Merten OW, Gény-Fiamma C, Leger W, Wiesinger-Mayr H, Muller D, Katinger H, Martensson P, Bachinger T, Mitrovics J (2005) On-line detection of microbial contaminations in animal cell reactor cultures using an electronic nose device. Cytotechnology 48:41–58

    Article  Google Scholar 

  16. Cimander C, Carlsson M, Mandenius CF (2002) Sensor fusion for on-line monitoring of yoghurt fermentation. J Biotechnol 99:237–248

    Article  CAS  Google Scholar 

  17. Bachinger T, Riese U, Eriksoon RK, Mandenius CF (2000) Electronic nose for estimation of product concentration in mammalian cell cultivation. Bioprocess Eng 23:637–642

    Article  CAS  Google Scholar 

  18. Rodríguez SD, Monge ME, Olivieri AC, Negri RM, Bernik DL (2010) Time dependence of the aroma pattern emitted by an encapsulated essence studied by means of electronic noses and chemometric analysis. Food Res Int 43:797–804

    Article  Google Scholar 

  19. Monge ME, Negri RM, Giacomazza D, Bulone D (2008) Correlation between rheological properties and limonene release in pectin gels using an electronic nose. Food Hydrocolloid 22:916–924

    Article  Google Scholar 

  20. Negri RM, Bernik DL (2008) Tracking the sex pheromone of codling moth against a background of host volatiles with an electronic nose. Crop Prot 27:1295–1302

    Article  CAS  Google Scholar 

  21. Diz V, Cassanello MR, Negri RM (2006) Detection and discrimination of phenol and primary alcohols in water using electronic noses. Environ Sci Technol 40:6058–6063

    Article  CAS  Google Scholar 

  22. Lovino M, Cardinal MFD, Zubiri BV, Bernik DL (2005) Electronic nose screening of ethanol release during sol-gel encapsulation. A novel non-invasive method to test silica polymerization. Biosens Bioelectron 21:857–862

    Article  CAS  Google Scholar 

  23. Monge ME, Bulone D, Giacomazza D, Bernik DL, Negri RM (2004) Detection of flavour release form pectin gels using electronic noses. Sens Actuators B Chem 101:28–38

    Article  Google Scholar 

  24. Monge ME, Bulone D, Giacomazza D, Negri RM, Bernik DL (2004) Electronic nose screening of limonene release from multicomponent essential oils encapsulated in pectin gels. Comb Chem High T Scr 7:337–344

    CAS  Google Scholar 

  25. Branca A, Simonian P, Ferrante M, Novas E, Negri RM (2003) Electronic nose based discrimination of a perfumery compound in a fragrance. Sens Actuators B-Chem 92:222–227

    Article  Google Scholar 

  26. O′Connell M, Valdora G, Peltzer G, Negri RM (2001) A practical approach for fish freshness studies using a portable electronic nose. Sens Actuator 80:149–154

    Article  Google Scholar 

  27. Bredberg K, Karlsson HT, Holst O (2004) Reduction of vanadium(V) with Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Bioresour Technol 92:93–96

    Article  CAS  Google Scholar 

  28. Gargarello RM, Di Gregorio D, Huck H, Fernandez Niello J, Curutchet G (2010) Reduction of uranium(VI) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy 104:529–532

    Article  CAS  Google Scholar 

  29. Johnson RA, Wichern DW (2002) Applied multivariate statistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  30. Struyf A, Hubert M, Rousseeuw PJ (1997) Integrating robust clustering techniques in S-PLUS. Comput Stat Data Anal 26:17–37

    Article  Google Scholar 

  31. Kaufman L, Rousseeuw PJ (1987) Statistical data analysis based on the L1 norm in: clustering by means of medoids. Elsevier/North Holland, Amsterdam

    Google Scholar 

  32. Mandenius CF (1999) In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin

    Google Scholar 

  33. Choi DW, Lee WL, Lim SJ, Kim BJ, Chang HN, Chang ST (2003) Simulation on long-term operation of an anaerobic bioreactor for Korean food wastes. Biotechnol Bioprocess Eng 8:23–31

    Article  CAS  Google Scholar 

  34. Malakahmad A, Zain SM, Ahmad Basri NE, Mohamed Kutty SR, Isa MH (2009) Identification of anaerobic microorganisms for converting kitchen waste to biogas. World Acad Sci Eng Technol 60:882–885

    Google Scholar 

  35. Fernández MR, Bernik DL (2010) Whole-cell biosensors: research and patents. Recent Pat Biomed Eng 3:138–146

    Article  Google Scholar 

Download references

Acknowledgments

PER is a postdoctoral fellowship of the National Agency for Promotion of Science and Technology (ANPCYT, Argentina). DLB and RMN are researchers at the National Council of Research and Technology (CONICET, Argentina). Financial support was received from the University of Buenos Aires (UBACyT 2008-2010, project X157), ANPCYT (PICT 2006-00568) and CONICET (PIP 6382 and 01210). The authors thank to the Center of Documental Production (CePro, School of Sciences, University of Buenos Aires) for the presented picture (Fig. 1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Martín Negri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosi, P.E., Miscoria, S.A., Bernik, D.L. et al. Customized design of electronic noses placed on top of air-lift bioreactors for in situ monitoring the off-gas patterns. Bioprocess Biosyst Eng 35, 835–842 (2012). https://doi.org/10.1007/s00449-011-0667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0667-z

Keywords

Navigation