Skip to main content
Log in

Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m3 fermenter

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The physiological response of erythromycin fermentation scale-up from 50 L to 132 m3 scale was investigated. A relatively high oxygen uptake rate (OUR) in early phase of fermentation was beneficial for erythromycin biosynthesis. Correspondingly, the maximal consistency coefficient (K) reflecting non-Newtonian fluid characteristics in 50 L and 132 m3 fermenter also appeared in same phase. Fluid dynamics in different scale bioreactor was further investigated by real-time computational fluid dynamics modeling. The results of simulation showed that the impeller combination in 50 L fermenter could provide more modest flow field environment compared with that in 132 m3 fermenter. The decrease of oxygen transfer rate (OTR) in 132 m3 fermenter was the main cause for impairing cell physiological metabolism and erythromycin biosynthesis. These results were helpful for understanding the relationship between hydrodynamic environment and physiological response of cells in bioreactor during the scale-up of fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\( d_{\text{b}} \) :

Mean diameter of bubbles (m)

\( D_{\text{L}} \) :

Oxygen diffusivity in liquid (m2/s)

D :

Impeller diameter (mm)

H :

Liquid height (mm)

K L :

Oxygen mass transfer coefficient in liquid membrane (m/s)

L :

Baffle length (mm)

N :

Rotating speed (rpm)

r :

Radial coordinate (m)

S :

Source item in N–S equation

T :

Tank diameter (mm)

t c :

Circulation time of cell through the impeller sweeping zone (s)

V L :

Bioreactor capacity (L)

w :

Baffle width (mm)

z :

z coordinate (m).

\( \phi_{\text{v}} \) :

Viscous dissipation function (1/s2)

μ :

Liquid viscosity (Pa s)

\( \tau \) :

Shear strain (Pa)

γ :

Shear strain rate (s)

ϕ :

Local volume fraction of the gas phase (m)

\( \varepsilon \) :

Local energy dissipation rate (w)

References

  1. Wang Y, Chu J, Zhuang Y, Wang Y, Xia J, Zhang SL (2009) Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol Adv 27:989–995

    Article  CAS  Google Scholar 

  2. Singh H, Hutmacher DW (2009) Bioreactor studies and computational fluid dynamics. Adv Biochem Eng Biotechnol 113:1–19

    Google Scholar 

  3. Um BH, Hanley TR (2008) A CFD model for predicting the flow patterns of viscous fluids in a bioreactor under various operating conditions. Korean J Chem Eng 25:1094–1102

    Article  CAS  Google Scholar 

  4. Kerdouss F, Bannari A, Proulx P, Bannari R, Skrga M, Labrecque Y (2008) Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Comput Chem Eng 32:1943–1955

    Article  CAS  Google Scholar 

  5. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Article  CAS  Google Scholar 

  6. Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL (2009) Enhancement of erythromycin A production with feeding available nitrogen sources in erythromycin biosynthesis phase. Bioresour Technol 100:3358–3365

    Article  CAS  Google Scholar 

  7. Zou X, Hang HF, Chen CF, Chu J, Zhuang YP, Zhang SL (2008) Application of oxygen uptake rate and response surface methodology for erythromycin production by Saccharopolyspora erythraea. J Ind Microbiol Biot 35:1637–1642

    Article  CAS  Google Scholar 

  8. Nienow AW (1990) Gas dispersion performance in fermenter operation. Chem Eng Prog 85:61–71

    Google Scholar 

  9. Wu BX, Chen SL (2008) CFD simulation of non-Newtonian fluid flow in anaerobic digesters. Biotechnol Bioeng 99:700–711

    Article  CAS  Google Scholar 

  10. Davidson KM, Sushil S, Eggleton CD, Marten MR (2003) Using computational fluid dynamics software to estimate circulation time distributions in bioreactors. Biotechnol Progr 19:1480–1486

    Article  CAS  Google Scholar 

  11. Xia JY, Wang YH, Zhang SL, Chen N, Zhuang YP, Chu J (2009) Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem Eng J 43:252–260

    Article  CAS  Google Scholar 

  12. Kawase Y, Moo-Young M (1988) Volumetric mass transfer coefficients in aerated stirred tank reactors with Newtonian and non-Newtonian media. Chem Eng Res Des 66:284–288

    CAS  Google Scholar 

  13. Garcia-Ochoa FF, Gomez E (2004) Theoretical prediction of gas-liquid mass transfer coefficient, specific area and hold-up in sparged stirred tanks. Chem Eng Sci 59:2489–2501

    Article  CAS  Google Scholar 

  14. Garcia-Ochoa FF, Gomez E (2005) Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors. Biotechonl Bioeng 92:761–772

    Article  CAS  Google Scholar 

  15. Wang TF, Wang JF (2007) Numerical simulations of gas-liquid mass transfer in bubble columns with a CFD-PBM coupled method. Chem Eng Sci 62:7107–7118

    Article  CAS  Google Scholar 

  16. Jüsten P, Paul GC, Nienow AW, Thomas CR (1996) Dependence of mycelial morphology on impeller type and agitation intensity. Biotechnol Bioeng 52:672–684

    Article  Google Scholar 

  17. Amanullah A, Jüsten P, Davies A, Paul GC, Nienow AW, Thomas CR (2000) Agitation induced mycelial fragmentation of Aspergillus oryzae and Penicillium chrysogenum. Biochem Eng J 5:109–114

    Article  Google Scholar 

  18. Van Suijdam JC, Metz B (1981) Influence of engineering variables upon the morphology of filamentous molds. Biotechnol Bioeng 23:111–148

    Article  Google Scholar 

  19. Taghavi M, Zadghaffari R, Moghaddas J, Moghaddas Y (2011) Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank. Chem Eng Res Des 89:280–290

    Article  CAS  Google Scholar 

  20. Schilling BM, Pfefferle W, Bachmann B, Leuchtenberger W, Deckwer WD (1999) A special reactor design for investigations of mixing time effects in a scaled-down industrial l-lysine fed-batch fermentation process. Biotechnol Bioeng 64:599–606

    Article  CAS  Google Scholar 

  21. Zou X, Hang HF, Chu J, Zhuang YP, Zhang SL (2009) Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m(3) scale. Bioresour Technol 100:1406–1412

    Article  CAS  Google Scholar 

  22. Martin M, Montes JF, Galan MA (2008) Bubbing process in stirred tank reactors II: agitator effect on the mass transfer rates. Chem Eng Sci 63:3223–3234

    Article  CAS  Google Scholar 

  23. Bhole MR, Joshi J, Ramkrishna D (2008) CFD simulation of bubble columns incorporating population balance modeling. Chem Eng Sci 63:2267–2282

    Article  CAS  Google Scholar 

  24. Delvigne F, Destain J, Thonart P (2005) Bioreactor hydrodynamic effect on Escherichia coli physiology: experimental results and stochastic simulations. Bioprocess Biosyst Eng 28:131–137

    Article  CAS  Google Scholar 

  25. Hortsch R, Weuster-Botz D (2010) Power consumption and maximum energy dissipation in a milliliter-scale bioreactor. Biotechnol Progr 26:595–599

    CAS  Google Scholar 

  26. Martin M, Montes JF, Galan MA (2009) Physical explanation of the empirical coefficients of gas–liquid mass transfer equations. Chem Eng Sci 64:410–425

    Article  CAS  Google Scholar 

  27. Moucha T, Linek V, Erokhin K, Reji JF, Fujasova M (2009) Improved power and mass transfer correlations for design and scale-up of multi-impeller gas–liquid contactors. Chem Eng Sci 64:598–604

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the National Scientific and Technological Major Special Project (Significant Creation of New drugs), No. 2011ZX09203-001-03, and the Major State Basic Research Development Program of China (973 Program), No. 2007CB714303.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Chu.

Additional information

X. Zou and J. Xia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, X., Xia, Jy., Chu, J. et al. Real-time fluid dynamics investigation and physiological response for erythromycin fermentation scale-up from 50 L to 132 m3 fermenter. Bioprocess Biosyst Eng 35, 789–800 (2012). https://doi.org/10.1007/s00449-011-0659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0659-z

Keywords

Navigation