Skip to main content
Log in

Optimization production of acid urease by Enterobacter sp. in an approach to reduce urea in Chinese rice wine

  • Short Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Urea in alcoholic beverages is a precursor of ethyl carbamate, which is carcinogenic. Acid urease (EC 3.5.1.5) is regarded as a good approach to scavenge the urea. The acid urease of Enterobacter sp. R-SYB082, with lower optimum pH than the widely used commercial acid urease, exhibited a urea removal rate of 66.5% in Chinese rice wine, which was higher than that of the commercial acid urease (58.9%). The production of the acid urease was optimized from 1,100 to 2,504 U L−1 by an approach which includes the optimization of initial glucose concentration, the elevation of anaerobic level of the reactor by charging CO2 and in vitro natural activation of the target enzyme by simple cold storage (4°C). These would open up the possibility for developing industrial application of this acid urease for producing high-quality Chinese rice wine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Delledonne D, Rivetti F, Romano U (2001) Developments in the production and application of dimethylcarbonate. Appl Catal A gen 221(1–2):241–251

    Article  CAS  Google Scholar 

  2. Wang D, Yang B, Zhai X, Zhou L (2007) Synthesis of diethyl carbonate by catalytic alcoholysis of urea. Fuel Process Technol 88(8):807–812

    Article  CAS  Google Scholar 

  3. Schehl B, Senn T, Lachenmeier DW, Rodicio R, Heinisch JJ (2007) Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits. Appl Microbiol Biot 74(4):843–850

    Article  CAS  Google Scholar 

  4. Whitney PA, Magasanik B (1973) The induction of arginase in Saccharomyces cerevisiae. J Biol Chem 248(17):6197–6202

    CAS  Google Scholar 

  5. Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59(3):451–480

    CAS  Google Scholar 

  6. Butzke CE, Bisson LF (1997) Ethyl carbamate preventative action manual. University of California Press, Washington

    Google Scholar 

  7. Yang LQ, Wang SH, Tian YP (2010) Purification, properties, and application of a novel acid urease from Enterobacter sp. Appl Biochem Biotech 160(2):303–313

    Article  CAS  Google Scholar 

  8. Zhou JD, Ding GH, Zheng ZQ (2006) Study on enzymatic characteristics of acid urease to hydrolyze urea in Chinese rice wine. China Brew 11(11):45–46

    Google Scholar 

  9. Larcher R, Nicolini G, Bertoldi D (2007) Application of differential pH technique to the determination of urea in Italian wines. Vitis 46(3):148–153

    CAS  Google Scholar 

  10. Esti M, Fidaleo M, Moresi M, Tamborra P (2007) Modeling of urea degradation in white and rose wines by acid urease. J Agr Food Chem 55(7):2590–2596

    Article  CAS  Google Scholar 

  11. Iida Y, Hara N, Matsumoto K, Satoh I (2003) Spectrophotometric microdetermination of urea in rice wine by using an immobilized acid urease column FIA system. IEEJ Trans SM 123(8):306–312

    Article  Google Scholar 

  12. Andrich L, Esti M, Moresi M (2010) Urea degradation in some white wines by immobilized acid urease in a stirred bioreactor. J Agr Food Chem 58(11):6747–6753

    Article  CAS  Google Scholar 

  13. Miyagawa K, Sumida M, Nakao M, Harada M, Yamamoto H, Kusumi T, Yoshizawa K, Amachi T, Nakayama T (1999) Purification, characterization, and application of an acid urease from Arthrobacter mobilis. J Biotechnol 68(2–3):227–236

    Article  CAS  Google Scholar 

  14. Fidaleo M, Esti M, Moresi M (2006) Assessment of urea degradation rate in model wine solutions by acid urease from Lactobacillus fermentum. J Agr Food Chem 54(17):6226–6235

    Article  CAS  Google Scholar 

  15. Chen YM, Burne RA (1996) Analysis of Streptococcus salivarius urease expression using continuous chemostat culture. FEMS Microbiol Lett 135:223–229

    Article  CAS  Google Scholar 

  16. Zotta T, Ricciardi A, Rossano R, Parente E (2008) Urease production by Streptococcus thermophilus. Food Microbiol 25(1):113–119

    Article  CAS  Google Scholar 

  17. Park IS, Hausinger RP (1995) Requirement of carbon dioxide for in vitro assembly of the urease nickel metallocenter. Science 267(5201):1156–1158

    Article  CAS  Google Scholar 

  18. Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39(8):971–974

    Article  CAS  Google Scholar 

  19. Carmel AVR, Heiwig JR (1977) Urea determination of biological fluids using diacetylmonoxime reaction. United States Patent 4040787, August 9

  20. Zhao SM, Xu W, Jiang WQ, Yu W, Lin Y, Zhang TF, Yao J, Zhou L, Zeng YX, Li H, Li YX, Shi J, An WL, Hancock SM, He FC, Qin LX, Chin J, Yang PY, Chen X, Lei QY, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004

    Article  CAS  Google Scholar 

  21. Shiloach J, Rinas U (2009) Glucose and acetate metabolism in E. coli-system level analysis and biotechnological applications in protein production processes. In: Lee SY (ed) Systems biology and biotechnology of Escherichia coli. Springer Netherlands, BV, pp 377–400

    Google Scholar 

  22. van de Walle M, Shiloach J (1998) Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng 57(1):71–78

    Article  Google Scholar 

  23. Phue J-N, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and northern blot analyses. Biotechnol Bioeng 90(7):805–820

    Article  CAS  Google Scholar 

  24. Negrete A, Ng WI, Shiloach J (2010) Glucose uptake regulation in E. coli by the small RNA SgrS: comparative analysis of E. coli K-12 (JM109 and MG1655) and E. coli B (BL21). Microb Cell Fact 9:75–83

    Article  Google Scholar 

  25. Sachs G, Weeks DL, Wen Y, Marcus EA, Scott DR, Melchers K (2005) Acid acclimation by Helicobacter pylori. Physiology 20:429–438

    Article  CAS  Google Scholar 

  26. Scott DR, Marcus EA, Weeks DL, Lee A, Melchers K, Sachs G (2000) Expression of the Helicobacter pylori ure I gene is required for acidic pH activation of cytoplasmic urease. Infect Immun 68(2):470–477

    Article  CAS  Google Scholar 

  27. Pflock M, Kennard S, Delany I, Scarlato V, Beier D (2005) Acid-induced activation of the urease promoters is mediated directly by the ArsRS two-component system of Helicobacter pylori. Infect Immun 73(10):6437–6445

    Article  CAS  Google Scholar 

  28. Mora D, Monnet C, Parini C, Guglielmetti S, Mariani A, Pintus P, Molinari F, Daffonchio D, Manachini PL (2005) Urease biogenesis in Streptococcus thermophilus. Res Microbiol 156(9):897–903

    Article  CAS  Google Scholar 

  29. Rektorschek M, Weeks D, Sachs G, Melchers K (1998) Influence of pH on metabolism and urease activity of Helicobacter pylori. Gastroenterology 115(3):628–641

    Article  CAS  Google Scholar 

  30. Scott DR, Marcus EA, Weeks DL, Sachs G (2002) Mechanisms of acid resistance due to the urease system of Helicobacter pylori. Gastroenterology 123(1):187–195

    Article  CAS  Google Scholar 

  31. Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20(1):37–45

    Article  CAS  Google Scholar 

  32. McCoy DDCA, Hausinger RP (1992) Characterization of urease from Sporosarcina ureae. Arch Microbiol 157(5):411–416

    Article  CAS  Google Scholar 

  33. Park IS, Carr MB, Hausinger RP (1994) In vitro activation of urease apoprotein and role of UreD as a chaperone required for nickel metallocenter assembly. Proc Natl Acad Sci USA 91(8):3233–3237

    Article  CAS  Google Scholar 

  34. Soriano A, Colpas GJ, Hausinger RP (2000) UreE stimulation of GTP-dependent urease activation in the UreD- UreF-UreG-urease apoprotein complex. Biochemistry 39(40):12435–12440

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Key Technology R&D Program, Ministry of Science and Technology, China (2007BAK36B00 and 2008BAI63B06), the State Key Laboratory of Food Science and Technology, Jiangnan University (No SKLF-MB-200801), and Chinese rice wine Subcommittee of China Alcoholic Drinks Industry Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Xu, Y., Nie, Y. et al. Optimization production of acid urease by Enterobacter sp. in an approach to reduce urea in Chinese rice wine. Bioprocess Biosyst Eng 35, 651–657 (2012). https://doi.org/10.1007/s00449-011-0643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0643-7

Keywords

Navigation