Skip to main content
Log in

Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Cassava pulp was hydrolyzed with acids or enzymes. A high glucose concentration (>100 g/L) was obtained from the hydrolysis with 1 N HCl at 121 °C, 15 min or with cellulase and amylases. While a high glucose yield (>0.85 g/g dry pulp) was obtained from the hydrolysis with HCl, enzymatic hydrolysis yielded only 0.4 g glucose/g dry pulp. These hydrolysates were used as the carbon source in fermentation by Rhizopus oryzae NRRL395. R. oryzae could not grow in media containing the hydrolysates treated with 1.5 N H2SO4 or 2 N H3PO4, but no significant growth inhibition was found with the hydrolysates from HCl (1 N) and enzyme treatments. Higher ethanol yield and productivity were observed from fermentation with the hydrolysates when compared with those from fermentation with glucose in which lactic acid was the main product. This was because the extra organic nitrogen in the hydrolysates promoted cell growth and ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nishise H, Fuji A, Ueno M, Vongsuvanlert V, Tani Y (1988) Production of raw cassava starch-digestive glucoamylase by Rhizopus sp. in liquid culture. J Ferment Technol 66:397–402

    Article  CAS  Google Scholar 

  2. Pandey A, Soccol CR, Nigam P, Soccol VT, Vandenberghe LPS, Mohan R (2000) Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technol 74:81–87

    Article  CAS  Google Scholar 

  3. Soccol CR, Vandenberghe LPS (2003) Overview of applied solid-state fermentation in Brazil. Biochem Eng J 13:205–218

    Article  CAS  Google Scholar 

  4. Sriroth K, Chollakup R, Chotineeranat S, Piyachomkwan K, Oates CG (2000) Processing of cassava waste for improved biomass utilization. Bioresour Technol 71:63–69

    Article  CAS  Google Scholar 

  5. Carta FS, Soccol CR, Ramos LP, Fontana JD (1999) Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresour Technol 68:23–28

    Article  CAS  Google Scholar 

  6. Christen P, Bramorski A, Revah S, Soccol CR (2000) Characterization of volatile compounds produced by Rhizopus strains grown on agro-industrial solid wastes. Bioresour Technol 71:211–215

    Article  CAS  Google Scholar 

  7. Kitpreechavanich V, Maneeboon T, Kayano Y, Sakai K (2008) Comparative characterization of l-lactic acid-producing thermotolerant Rhizopus fungi. J Biosci Bioeng 106:541–548

    Article  CAS  Google Scholar 

  8. Vink ETH, Rabago KR, Glassner DA, Springs R, O’Corner RP, Gruber PR (2004) The sustainability of NatureWorksTM polylactide polymers and IngeoTM polylactide fibersa: an update of the future. Macromol Biosci 4:551–564

    Article  CAS  Google Scholar 

  9. Yu R-C, Hang YD (1989) Kinetics of direct fermentation of agricultural commodities to l(+)-lactic acid by Rhizopus oryzae. Biotechnol Lett 11:597–600

    Article  CAS  Google Scholar 

  10. Zhan X, Wang D, Tuinstra MR, Bean S, Seib PA, Sun XS (2003) Ethanol and lactic acid production as affected by sorghum genotype and location. Ind Crop Prod 18:245–255

    Article  CAS  Google Scholar 

  11. Aikat K, Bhattacharyya BC (2001) Protease production in solid state fermentation with liquid medium recycling in a stacked plate reactor and in a packed bed reactor by a local strain of Rhizopus oryzae. Process Biochem 36:1059–1068

    Article  CAS  Google Scholar 

  12. Huang LP, Jin B, Lant P (2005) Direct fermentation of potato starch wastewater to lactic acid by Rhizopus arrhizus. Bioprocess Biosyst Eng 27:229–238

    Article  Google Scholar 

  13. Ruengruglikit C, Hang YD (2003) l(+)-lactic acid production from corncobs by Rhizopus oryzae NRRL-395. LWT Food Sci Technol 36:573–575

    CAS  Google Scholar 

  14. Sun SY, Xu Y (2008) Solid-state fermentation for ‘whole-cell synthetic lipase’ production from Rhizopus chinensis and identification of the functional enzyme. Process Biochem 43:219–224

    Article  CAS  Google Scholar 

  15. Taherzadeh MJ, Fox M, Hjorth H, Edebo L (2003) Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae. Bioresour Technol 88:167–177

    Article  CAS  Google Scholar 

  16. Tani Y, Fuji A, Nishise H (1988) Production of raw cassava starch-digestive glucoamylase by a 2-deoxyglucose-resistant mutant of Rhizopus sp. J Ferment Technol 66:545–551

    Article  CAS  Google Scholar 

  17. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Effect of inhibitors released during steam-explosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol Prog 20:200–206

    Article  CAS  Google Scholar 

  18. Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35:251–263

    Article  CAS  Google Scholar 

  19. Thongchul N, Yang S-T (2003) Controlling filamentous fungal morphology by immobilization on a rotating fibrous matrix to enhance oxygen transfer and l(+)-lactic acid production by Rhizopus oryzae. In: Saha BC (ed) Fermentation biotechnology. Oxford University Press, MA, pp 36–51

    Chapter  Google Scholar 

  20. Lowry OH, Rosenbrough NJ, Farr AL, Randell RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  21. Chamy R, Illanes A, Aroca G, Nunez L (1994) Acid hydrolysis of sugar beet pulp as pretreatment for fermentation. Bioresour Technol 50:149–152

    Article  CAS  Google Scholar 

  22. Stryer B (1995) Biochemistry, 4th edn. Freeman and Company, New York

    Google Scholar 

  23. Urbaneja G, Ferrer J, Paez G, Arenas L, Colina G (1996) Acid hydrolysis and carbohydrates characterization of coffee pulp. Renew Energy 9:1041–1044

    Article  CAS  Google Scholar 

  24. Malester AI, Green M, Kimchie S, Shelef G (1988) The effect of the neutralizing capacity of cellulosic materials on the kinetics of cellulose dilute acid hydrolysis. Biol Waste 26:115–124

    Article  CAS  Google Scholar 

  25. Nichols NN, Sharma LN, Mowery RA, Chambliss CK (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzym Microb Tech 42:624–630

    Article  CAS  Google Scholar 

  26. Agu RC, Amadife AE, Ude CM, Onyia A, Ogu EO, Okafor M (1997) Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production. Waste Manag 17:91–96

    Article  CAS  Google Scholar 

  27. Zhu Y, Wu Z, Yang S-T (2002) Butyric acid production from acid hydrolysate of corn fiber by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Process Biochem 38:657–666

    Article  CAS  Google Scholar 

  28. Mussatto SI, Marcela F, Milagres AMF, Roberto IC (2008) Effect of hemicelluloses and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzym Microb Tech 43:124–129

    Article  CAS  Google Scholar 

  29. Absar N, Zaidul ISM, Takigawa S, Hashimoto N, Matsuura-Endo C, Yamauchi H, Noda T (2009) Enzymatic hydrolysis of potato starches containing different amounts of phosphorus. Food Chem 112:57–62

    Article  CAS  Google Scholar 

  30. Kassim EA, El-Shahed AS (1986) Enzymatic and chemical hydrolysis of certain cellulosic materials. Agric Wastes 17:229–233

    Article  CAS  Google Scholar 

  31. Chandra M, Kalra A, Sangwan NS, Gaurav SS, Darokar MP, Sangwan RS (2009) Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Bioresour Technol 100:1659–1662

    Article  CAS  Google Scholar 

  32. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  CAS  Google Scholar 

  33. Woiciechowski AL, Nitsche S, Pandey A, Soccol CR (2002) Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study. Braz Arch Biol Technol 45:393–400

    Article  CAS  Google Scholar 

  34. Buchholz K, Seibel J (2008) Industrial carbohydrate biotransformations. Carbohydr Res 343:1966–1979

    Article  CAS  Google Scholar 

  35. Gamez S, Gonzalez-Cabriales JJ, Ramirez JA, Garrote G, Vazquez M (2006) Study of the hydrolysis of sugar cane bagasse using phosphoric acid. J Food Eng 74:78–88

    Article  CAS  Google Scholar 

  36. Grzenia DL, Schell DJ, Wickramasinghe SR (2008) Membrane extraction for removal of acetic acid from biomass hydrolysates. J Membr Sci 322:189–195

    Article  CAS  Google Scholar 

  37. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    Article  CAS  Google Scholar 

  38. Skory CD, Freer SN, Bothast RJ (1998) Production of l-lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol Lett 20:191–194

    Article  CAS  Google Scholar 

  39. Tay A, Yang S-T (2002) Production of l(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol Bioeng 80:1–12

    Article  CAS  Google Scholar 

  40. Liu Y, Liao W, Liu C, Chen S (2006) Optimization of l-(+)-lactic acid production using pelletized filamentous Rhizopus oryzae NRRL395. Appl Biochem Biotech 129–132:844–853

    Article  Google Scholar 

  41. Roble ND, Ogbonna JC, Tanaka H (2003) l-lactic acid production from raw cassava starch in a circulating loop bioreactor with cells immobilized in loofa (Luffa cylindrical). Biotechnol Lett 25:1093–1098

    Article  CAS  Google Scholar 

  42. John RP, Sukumaran RK, Nampoothiri KM, Pandey A (2007) Statistical optimization of simultaneous saccharification and l(+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochem Eng J 36:262–267

    Article  CAS  Google Scholar 

  43. Ganguly R, Dwivedi P, Singh RP (2007) Production of lactic acid with loofa sponge immobilized Rhizopus oryzae RBU2-10. Bioresour Technol 98:1246–1251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by Commission on Higher Education and Thailand Research Fund (Grant number: MRG5080097). Raw cassava pulp was kindly provided by Chonjareon Cassava Mill, Thailand. We thank Sitanan Thitiprasert for assistance in analyzing fermentation samples and Siam Victory Chemicals, Thailand, for technical supports and providing enzyme samples (Genencor products).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuttha Thongchul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thongchul, N., Navankasattusas, S. & Yang, ST. Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis. Bioprocess Biosyst Eng 33, 407–416 (2010). https://doi.org/10.1007/s00449-009-0341-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0341-x

Keywords

Navigation