Skip to main content
Log in

An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Advances in high-throughput techniques have led to the creation of increasing amounts of glycome data. The storage and analysis of this data would benefit greatly from a compact notation for describing glycan structures that can be easily stored and interpreted by computers. Towards this end, we propose a fixed-length alpha-numeric code for representing N-linked glycan structures commonly found in secreted glycoproteins from mammalian cell cultures. This code, GlycoDigit, employs a pre-assigned alpha-numeric index to represent the monosaccharides attached in different branches to the core glycan structure. The present branch-centric representation allows us to visualize the structure while the numerical nature of the code makes it machine readable. In addition, a difference operator can be defined to quantitatively differentiate between glycan structures for further analysis. The usefulness and applicability of GlycoDigit were demonstrated by constructing and visualizing an N-linked glycosylation network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CHO:

Chinese Hamster ovary

Gal:

Galactose

GlcNAc:

N-Acetylglucosamine

IUPAC:

International Union for Pure and Applied Chemistry

Man:

Mannose

NeuNAc:

N-Acetylneuraminic acid

References

  1. Pérez S, Mulloy B (2005) Prospects for glycoinformatics. Curr Opin Struct Biol 15:517–524

    Article  CAS  Google Scholar 

  2. von der Lieth CW (2004) An endorsement to create open databases for analytical data of complex carbohydrates. J Carbohydr Chem 23:277–297

    Article  CAS  Google Scholar 

  3. Laine RA (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 6:759–767

    Article  Google Scholar 

  4. von der Lieth CW, Bohne-Lang A, Lohmann KK, Frank M (2004) Bioinformatics for glycomics: status, methods, requirements and perspectives. Brief Bioinform 5:164–178

    Article  Google Scholar 

  5. Brazma A, Krestyaninova M, Sarkans U (2006) Standards for systems biology. Nat Rev Genet 7:593–605

    Article  CAS  Google Scholar 

  6. McNaught AD (1997) Nomenclature of carbohydrates (recommendations 1996). Adv Carbohydr Chem Biochem 52:43–177

    Article  CAS  Google Scholar 

  7. Bohne-Lang A, Lang E, Forster T, von der Lieth CW (2001) LINUCS: linear notation for unique description of carbohydrate sequences. Carbohydr Res 336:1–11

    Article  CAS  Google Scholar 

  8. Banin E, Neuberger Y, Altshuler Y, Halevi A, Inbar O, Nir D, Dukler A (2002) A novel linear code nomenclature for complex carbohydrates. Trends Glycosci Glycotechnol 14:127–137

    CAS  Google Scholar 

  9. Sahoo SS, Thomas C, Sheth A, Henson C, York WS (2005) GLYDE-an expressive XML standard for the representation of glycan structure. Carbohydr Res 340:2802–2807

    Article  CAS  Google Scholar 

  10. Kikuchi N, Kameyama A, Nakaya S, Ito H, Sato T, Shikanai T, Takahashi Y, Narimatsu H (2005) The carbohydrate sequence markup language (CabosML): an XML description of carbohydrate structures. Bioinformatics 21:1717–1718

    Article  CAS  Google Scholar 

  11. Toukach P, Joshi HJ, Ranzinger R, Knirel Y, von der Lieth CW (2007) Sharing of worldwide distributed carbohydrate-related digital resources: online connection of the bacterial carbohydrate structure database and GLYCOSCIENCES.de. Nucleic Acids Res 35:D280–286

    Article  CAS  Google Scholar 

  12. Varki A et al (eds) (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York

  13. Campbell C, Stanley P (1984) A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide beta-4-N-acetylglucosaminyltransferase III activity. J Biol Chem 259:13370–13378

    CAS  Google Scholar 

  14. Sburlati AR, Umana P, Prati EG, Bailey JE (1998) Synthesis of bisected glycoforms of recombinant IFN-beta by over-expression of beta-1,4-N-acetylglucosaminyltransferase III in Chinese hamster ovary cells. Biotechnol Prog 14:189–192

    Article  CAS  Google Scholar 

  15. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  CAS  Google Scholar 

  16. Baker KN, Rendall MH, Hills AE, Hoare M, Freedman RB, James DC (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73:188–202

    Article  CAS  Google Scholar 

  17. Irie A, Koyama S, Kozutsumi Y, Kawasaki T, Suzuki A (1998) The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem 273:15866–15871

    Article  CAS  Google Scholar 

  18. Butler M (2006) Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems. Cytotechnology 50:57–76

    Article  CAS  Google Scholar 

  19. Jenkins N, Parekh RB, James DC (1996) Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 14:975–981

    Article  CAS  Google Scholar 

  20. Ma B, Simala-Grant JL, Taylor DE (2006) Fucosylation in prokaryotes and eukaryotes. Glycobiology 16:158R–184R

    Article  CAS  Google Scholar 

  21. Sasaki H, Bothner B, Dell A, Fukuda M (1987) Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem 262:12059–12076

    CAS  Google Scholar 

  22. Thomas LJ, Panneerselvam K, Beattie DT, Picard MD, Xu B, Rittershaus CW, Marsh HC Jr, Hammond RA, Qian J, Stevenson T, Zopf D, Bayer RJ (2004) Production of a complement inhibitor possessing sialyl Lewis X moieties by in vitro glycosylation technology. Glycobiology 14:883–893

    Article  CAS  Google Scholar 

  23. Barrabés S, Pagès-Pons L, Radcliffe CM, Tabarès G, Fort E, Royle L, Harvey DJ, Moenner M, Dwek RA, Rudd PM, De Llorens R, Peracaula R (2007) Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology 17:388–400

    Article  CAS  Google Scholar 

  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  25. Aoki KF, Yamaguchi A, Ueda N, Akutsu T, Mamitsuka H, Goto S, Kanehisa M (2004) KCaM (KEGG Carbohydrate Matcher): a software tool for analyzing the structures of carbohydrate sugar chains. Nucleic Acids Res 32:W267–W272

    Article  CAS  Google Scholar 

  26. Aoki KF, Mamitsuka H, Akutsu T, Kanehisa M (2005) A score matrix to reveal the hidden links in glycans. Bioinformatics 21:1457–1463

    Article  CAS  Google Scholar 

  27. Hossler P, Goh LT, Lee MM, Hu WS (2006) GlycoVis: visualizing glycan distribution in the protein N-glycosylation pathway in mammalian cells. Biotechnol Bioeng 95:946–960

    Article  CAS  Google Scholar 

  28. Hashimoto K, Goto S, Kawano S, Aoki-Kinoshita KF, Ueda N, Hamajima M, Kawasaki T, Kanehisa M (2006) KEGG as a glycome informatics resource. Glycobiology 16:63R–70R

    Article  CAS  Google Scholar 

  29. Lutteke T, Bohne-Lang A, Loss A, Goetz T, Frank M, von der Lieth CW (2006) GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology 16:71R–81R

    Article  CAS  Google Scholar 

  30. Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, Sasisekharan R (2006) Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16:82R–90R

    Article  CAS  Google Scholar 

  31. Hossler P, Mulukutla BC, Hu WS (2007) Systems analysis of N-glycan processing in mammalian cells. PLoS ONE 2(8):e713

    Article  CAS  Google Scholar 

  32. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation. Biotechnol Bioeng 92:711–728

    Article  CAS  Google Scholar 

  33. Umana P, Bailey JE (1997) A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng 55:890–908

    Article  CAS  Google Scholar 

  34. Bertozzi CR, Kiessling LL (2001) Carbohydrates and glycobiology review: chemical glycobiology. Science 291:2357–2364

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biomedical Research Council of A*STAR (Agency for Science, Technology and Research), Singapore. The authors would like to thank Dr. Niki Wong and Mr. Robin J. Philp for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Yup Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yusufi, F.N.K., Park, W., Lee, M.M. et al. An alpha-numeric code for representing N-linked glycan structures in secreted glycoproteins. Bioprocess Biosyst Eng 32, 97–107 (2009). https://doi.org/10.1007/s00449-008-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0226-4

Keywords

Navigation