Skip to main content
Log in

Assessment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A formal kinetic mathematical model for poly-(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] terpolyester synthesis from glucose and galactose derived from whey permeate supplemented with γ-butyrolactone by the archaeon Haloferax mediterranei was created. Further, a low structured mathematical model for poly-3-hydroxybutyrate synthesis from whey permeate by Pseudomonas hydrogenovora was developed. In both cases, biosyntheses for obtaining the experimental data used for compiling the models were performed via fed-batch cultivations. The model developed for H. mediterranei consists of 10 differential and 11 algebraic equations, including 27 kinetic constants. The model compiled for P. hydrogenovora encompasses 10 differential and 3 algebraic equations, including 36 kinetic constants. Both models were solved by Runge–Kuta variable step numerical integration with Monte Carlo parameter optimization procedure. Difficulties arising from the modeling of redirection of metabolic fluxes from biomass growth toward polyhydroxyalkanoate synthesis and byproducts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Trace elements solution (per liter): ZnSO4·7H2O, 100 mg; H3BO3, 300 mg; CoCl2·6H2O, 200 mg; CuSO4, 6 mg; NiCl2·6H2O, 20 mg; Na2MoO4·2H2O, 30 mg; MnCl2·2H2O, 25 mg.

Abbreviations

S 1 :

concentration of glucose

S 10 :

concentration of glucose in feed stream

S 2 :

concentration of galactose

S 20 :

concentration of galactose in feed stream

S 3 :

concentration of γ-butyrolactone

S 30 :

concentration of γ-butyrolactone in feed stream

N :

concentration of inorganic nitrogen source

NK:

concentration of complex nitrogen source

P 1 :

concentration of P-3HB

P 2 :

concentration of P-3HV

P 3 :

concentration of P-4HB

PHA:

concentration of PHA (PHA = P 1 + P 2 + P 3)

P t max :

maximum biologically possible PHA concentration

X r :

concentration of residual biomass

H :

concentration of yeast extract

MXr :

mass of residual biomass in reactor volume

MS1 :

mass of glucose in reactor volume

MS2 :

mass of galactose in reactor volume

MS3 :

mass of γ-butyrolactone in reactor volume

MP1 :

mass of P-3HB in reactor volume

MP2 :

mass of P-3HV in reactor volume

MP3 :

mass of P-4HB in reactor volume

MPt :

mass of total polymer; MPt = MP1 + MP2 + MP3

MH:

mass of yeast extract in reactor volume

V :

working volume

V 0 :

starting volume

F i :

inflow (fed-batch) in time interval “i

(t i :

time intervals for substrate inflows

μ (j)max :

partial maximal specific growth rates on substrate j=1–3

q p(j)s(k) :

specific production rates of products j=1–3 on substrates k=1–3

Y x/s(k) :

partial yield coefficients for residual biomass on substrates k=1–3

IPR:

mass fraction of Ac-CoA in the residual biomass; IPR = PR/X 1

IEK:

mass fraction of PHB-polymerase in the residual biomass; IEK = POL/X 1

References

  1. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  Google Scholar 

  2. Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. BioTechnology 13:142–150

    Article  CAS  Google Scholar 

  3. Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  CAS  Google Scholar 

  4. Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    CAS  Google Scholar 

  5. Silva LF, Taciro MK, Michelin Ramos ME, Carter JM, Pradella JGC, Gomez JGC (2004) Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate. J Ind Microbiol Biotechnol 31:245–254

    Article  CAS  Google Scholar 

  6. Lee SY (1998) Poly(3-hydroxybutyrate) production from xylose by recombinant Escherichia coli. Bioprocess Eng 18:397–399

    Article  Google Scholar 

  7. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565

    Article  CAS  Google Scholar 

  8. Pavolo S, Casella S (2003) Bacterial production of PHA from lactose and cheese whey permeate. Macromol Symp 197:1–9

    Article  CAS  Google Scholar 

  9. Ashby RD, Solaiman DKY, Foglia TA (2004) Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J Polym Environ 12:105–112

    Article  CAS  Google Scholar 

  10. Fukui T, Doi Y (1998) Efficient production of polyhydroxyalkanoates from plant oils by Alcaligenes eutrophus and its recombinant strain. Appl Microbiol Biotechnol 49:333–336

    Article  CAS  Google Scholar 

  11. Rodriguez-Valera F, Juez G, Kushner DJ (1983) Halobacterium mediterranei spec. nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4:369–381

    CAS  Google Scholar 

  12. Koller M (2005) PhD thesis, Graz University of Technology, Austria

  13. Ahrens W (1970) CO2-bedürftige Mutanten von Hydrogenomonas H16. PhD thesis, Universität Göttingen, Göttingen, Germany

  14. Davis JT, Moore RM, Imperiali B, Pratt AJ, Kobayashi K, Masamune S, Sinskey AJ, Walsh CT, Fukui T, Tomita K (1987a) Biosynthetic thiolase from Zoogloea ramigera I. Preliminary characterization and analysis of proton transfer reaction. J Biol Chem 262:82–89

    CAS  Google Scholar 

  15. Davis JT, Chen HH, Moore RM, Nishitani Y, Masamune S, Sinskey AJ, Walsh CT (1987b) Biosynthetic thiolase from Zoogloea ramigera II. Inactivation with haloacetyl CoA analogs. J Biol Chem 262:90–96

    CAS  Google Scholar 

  16. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Stockton, New York, pp. 122–213

  17. Gerngross TU, Snell KD, Peoples OP, Sinskey AJ, Csuhai E, Masamune S, Stubbe J (1994) Overexpression and purification of the soluble polyhydroxyalkanoate polymerase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 33:9311–9320

    Article  CAS  Google Scholar 

  18. Macrae RM, Wilkinson JF (1958) Poly-β-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium. J Gen Microbiol 19:210–222

    CAS  Google Scholar 

  19. Ataai MM, Shuler ML (1985) Simulation of the growth pattern of a single cell of Escherichia coli under anaerobic conditions. Biotechnol Bioeng 27:1027–1035

    Article  CAS  Google Scholar 

  20. Vallino JJ, Stephanopolous G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633–646

    Article  CAS  Google Scholar 

  21. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. II. Mathematical model. Biotechnol Bioeng 55:592–608

    Article  CAS  Google Scholar 

  22. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. I. Experimental observations. Biotechnol Bioeng 55:305–316

    Article  CAS  Google Scholar 

  23. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering. Principles and methodologies. Academic, San Diego

  24. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (P-3HB) and synthesis of P-3HB in Escherichia coli. J Bacteriol 170:5837–5847

    CAS  Google Scholar 

  25. Leaf TA, Srienc F (1998) Metabolic modeling of polyhydroxybutyrate biosynthesis. Biotechnol Bioeng 57:557–570

    Article  CAS  Google Scholar 

  26. Wong HH, van Wegen RJ, Choi JI, Lee SY, Middelberg APJ (1999) Metabolic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. J Microbiol Biotechnol 9:593–603

    CAS  Google Scholar 

  27. Katoh T, Yuguchi D, Yoshii H, Shi H, Shimizu K (1999) Dynamics and modeling on fermentative production of poly (β-hydroxybutyric acid) from sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Alcaligenes eutrophus. J Biotechnol 67:113–134

    Article  CAS  Google Scholar 

  28. van Wegen RJ, Lee SY, Middelberg APJ (2001) Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. Biotechnol Bioeng 74:71–80

    Article  Google Scholar 

  29. Weichert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  CAS  Google Scholar 

  30. Visser D, Heijden R, Mauch K, Reuss M, Heijnen S (2000) Tendency modeling: a new approach to obtain simplified kinetic models of metabolism applied to Saccharomyces cerevisiae. Metab Eng 2:252–275

    Article  CAS  Google Scholar 

  31. Braunegg G, Sonnleitner B, Lafferty R (1978) A rapid gaschromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol 6:29–37

    Article  CAS  Google Scholar 

  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  33. Lee SY, Hong SH, Park SJ, Van Wegen RJ, Middelberg APJ Metabolic flux analysis on the production of poly(3-hydroxybutyrate). Available online at: bpol3008_249_257

  34. Van Aalst-Van Leeuwen MA, Pot MA, Van Loosdrecht MCM, Heijnen JJ (1997) Kinetic modeling of poly(β-hydroxybutyrate) production and consumption by Paracoccus pantotrophus under dynamic substrate supply. Biotechnol Bioeng 55:773–782

    Article  Google Scholar 

  35. Van Wegen RJ, Lee SY, Middelberg APJ (2001) Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli. Biotechnol Bioeng 74:70–80

    Article  Google Scholar 

  36. Dhanasekar R, Viruthagiri T, Sabarathinam PL (2003) Poly(3-hydroxy butyrate) synthesis from a mutant strain Azotobacter vinelandii utilizing glucose in a batchreactor. Biochem Eng J 16:1–8

    Article  CAS  Google Scholar 

  37. Tohyama M, Patarinska T, Qiang Z, Shimizu K (2002) Modeling of the mixed culture and periodic control for P-3HB production. Biochem Eng J 10:157–173

    Article  CAS  Google Scholar 

  38. Mason TJ, Millis NF (1976) Growth kinetics of a yeast grown on glucose or hexadecane. Biotechnol Bioeng 18:1337–1349

    Article  CAS  Google Scholar 

  39. Maric V, Einsele A, Fiechter (1979) A respiratory activity and growth kinetics of Candida yeasts related to carbon sources and available energy. Appl Microbiol Biotechnol 8:157–165

    Article  CAS  Google Scholar 

  40. Müller RH, Babel W (1996) Measurement of growth at very low rates (μ≥0), a approach to study the energy requirement for the survival of Alcaligenes eutrophus JMP 134. Appl Environ Microbiol 62:147–151

    Google Scholar 

  41. Ackermann JU, Müller S, Lösche A, Bley T, BabelW (1995) Methylobacterium rhodesianum cells tend to double the DNA content under growth limitations and accumulate PHB. Biotechnology 39:9–20

    Article  CAS  Google Scholar 

  42. Park JS, Park HC, Huh TL, Lee YH (1995) Production of polyhydroxybutyrate by Alcaligenes eutrophus transformants harbouring cloned phb CAB genes. Biotechnol Lett 17:735–740

    Article  CAS  Google Scholar 

  43. Föllner CG, Ackermann JU, Babel W (1997) Which is the reducing power generator in methylotrophs for the synthesis of poly(3-hydroxybutyric acid)? (Poster 4/14). In: Eggink G (ed) International symposium on bacterial polyhydroxyalkanoates, Davos, ISBN 0-660-17083-3

  44. Bormann EJ (2000) Stoichiometrically calculated yields of the growth-associated production of polyhydroxybutyrate in bacteria. Biotechnol Lett 22:1437–1442

    Article  CAS  Google Scholar 

  45. Fernandez-Castillo R, Rodriguez-Valera F, Gonzales-Ramos J, Ruiz-Berraquero F (1986) Accumulation of poly(β-hydroxybutyrate) by halobacteria. Appl Environ Microbiol 51:214–216

    CAS  Google Scholar 

  46. Lillo G, Rodriguez-Valera F (1992) Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521

    Google Scholar 

Download references

Acknowledgment

This work was supported by Wheypol Growth EC-Project GRD2-2000-30385.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Koller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koller, M., Horvat, P., Hesse, P. et al. Assessment of formal and low structured kinetic modeling of polyhydroxyalkanoate synthesis from complex substrates. Bioprocess Biosyst Eng 29, 367–377 (2006). https://doi.org/10.1007/s00449-006-0084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-006-0084-x

Keywords

Navigation