Skip to main content
Log in

Biosoftening of coir fiber using selected microorganisms

  • Original paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30±2 °C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6–44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bhat JV, Nambudiri AMD (1971) The uniquity of coir retting. J Sci Ind Res 30:17–28

    Google Scholar 

  2. Thampan PK (1975) The coconut palm and its products. Greenvilla Publishing House, Kerala, pp 268–281

    Google Scholar 

  3. Menon SRK (1936) The chemistry of coir fibre. J Text Inst 27:229

    Article  Google Scholar 

  4. Blanchette RA (1984) Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol 48:647–653

    Google Scholar 

  5. Haider K, Trojanowski J, Sundman V (1978) Screening for lignin degrading bacteria by means of 14C-labelled lignins. Arch Microbiol 119:103–106

    Article  PubMed  CAS  Google Scholar 

  6. Gradziel K, Haider K, Kochmanska J, Malarczyk E, Trojanowski J (1978) Bacterial decomposition of synthetic 14C-labeled lignin and lignin monomer derivatives. Acta Microbiol Pol 27:103–109

    PubMed  CAS  Google Scholar 

  7. Glenn JK, Gold MH (1983) Decolourization of several polymeric dyes by the lignin degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 45:1741–1747

    CAS  Google Scholar 

  8. Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    Article  CAS  Google Scholar 

  9. Kirsten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    PubMed  Google Scholar 

  10. Kelley RL, Reddy CA (1986) Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium. J Bacteriol 166(1):269–74

    PubMed  CAS  Google Scholar 

  11. Volc J, Eriksson KE (1988) Pyranose 2-oxidase from Phanerochaete chrysosporium. Methods Enzymol 161:316–322

    CAS  Google Scholar 

  12. Bourbonnais R, Paice MG (1988) Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. Biochem J 255:445–450

    PubMed  CAS  Google Scholar 

  13. Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023

    PubMed  CAS  Google Scholar 

  14. Hatakka A (1994) Lignin-modifying enzymes from selected white rot fungi—production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  15. Sakurai A, Yamamoto T, Makabe A, Kinoshita S, Sakakibara M (2001) Removal of lignin - a liquid system by an isolated fungus. J Chem Technol Biotechnol 77:9–14

    Article  CAS  Google Scholar 

  16. Sirianuntapiboon S, Sihanonth P, Somachai P, Atthanasampunna P, Hayashida S (1995) An absorption mechanism for the decolourization of melanoidin by Rhizoctonia sp. D-90. Biosci Biotechnol Biochem 59:1185–1189

    Article  CAS  Google Scholar 

  17. Pandalai KM, Nair UK, Menon KPV (1957) A note on the quality in relation to the retting of coconut husks. Coir 1(3):30

    Google Scholar 

  18. Vogel HJ (1956) A convenient growth medium for Neurospora crassa. Genet Bull 13:42–43

    Google Scholar 

  19. Vares T, Kalsi M, Hatakka A (1995) Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiata during solid-state fermentation of wheat straw. J Appl Environ Microbiol 61(10):3515–3520

    CAS  Google Scholar 

  20. Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci 81:2280–2284

    Article  CAS  Google Scholar 

  21. Prasad SV, Pavithran C, Rohatgi PK (1983) Alkali treatment of coir fibers for coir–polyester composites. J Mater Sci 18:1443–1454

    Article  CAS  Google Scholar 

  22. Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood rotting fungi. Appl Environ Microbiol 32:192–194

    CAS  Google Scholar 

  23. Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42:290–296

    CAS  Google Scholar 

  24. Ulmer D, Leisola M, Puhakka J, Fiechter A (1983) Phanerochaete chrysosporium: growth pattern and lignin degradation. Eur J Appl Microbiol Biotechnol 18:153–157

    Article  CAS  Google Scholar 

  25. Leisola M, Ulmer D, Haltmeier T, Fiechter A (1983) Rapid solubilization and depolymerization of purified Kraft lignin by thin layers of Phanerochaete chrysosporium. Eur J Appl Microbiol Biotechnol 17:117–120

    Article  CAS  Google Scholar 

  26. Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023

    PubMed  CAS  Google Scholar 

  27. Reid ID, Paice MG (1998) Effects of manganese peroxidase on residual lignin of softwood kraft pulp. Appl Environ Microbiol 64(6):2273–2274

    PubMed  CAS  Google Scholar 

  28. Ander P, Eriksson KE (1975) Influence of carbohydrates on the lignin degradation of white rot fungus Sporotrichum pulverulentum. Svensk Paperstidn 78:643–652

    CAS  Google Scholar 

  29. Kirk TK, Fenn P (1982) Formation and action of the ligninolytic system in basidiomycetes. Cambridge University Press, Cambridge, pp 67–90

    Google Scholar 

  30. Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of cultural parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Director of Regional Research Laboratory for providing the necessary facility to carry out the work. Prof. Peter Koshy is thanked for SEM pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Emilia Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajan, A., Senan, R.C., Pavithran, C. et al. Biosoftening of coir fiber using selected microorganisms. Bioprocess Biosyst Eng 28, 165–173 (2005). https://doi.org/10.1007/s00449-005-0023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-005-0023-2

Keywords

Navigation