Skip to main content

Advertisement

Log in

Production of polyhydroxyalkanoates by mixed microbial cultures

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable bioplastics formed from renewable resources, like sugars, with similar characteristics of polypropylene. These bioplastics are industrially produced by pure cultures using expensive pure substrates. These factors lead to a much higher selling price of PHAs compared to petroleum-based plastics, like polypropylene. The use of mixed cultures and cheap substrates (waste materials) can reduce costs of PHA production by more than 50%. Storage of PHAs by mixed populations occurs under transient conditions mainly caused by discontinuous feeding and variation in the electron donor/acceptor presence. In the last years the mechanisms of storage, metabolism and kinetics of mixed cultures have been studied. The maximum capacity of PHA storage and production rate is dependent on the substrate and on the operating conditions used. In this paper an overview and discussion of various mechanisms and processes for PHA production by mixed cultures is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Biby GD (2002) Degradable plastics. http://www.icma.com/inf\polymers.htm

  2. Van Loosdrecht MCM, Pot MA, Heijnen JJ (1997) Water Sci Technol 35:41–47

    Google Scholar 

  3. Meesters K (1998) Production of poly-3-hydroxyalkanoates from waste streams. Design Report, Delft University of Technology

  4. Satoh H, Iwamoto Y, Mino T, Matsuo T (1998) Water Sci Technol 38:103–109

    Google Scholar 

  5. Kothuis B, Schelleman A (1996) Environmental and economic comparison of biotechnology with traditional alternatives. Report of the Institute for Applied Environmental Economics (TME), The Hague, The Netherlands

  6. Filipe CDM, Daigger GT, Grady Jr. CPL (2001) Biotech Bioeng 76:17–31

    Article  CAS  Google Scholar 

  7. Hesselmann RPX, Von Rummel R, Resnick SM, Hany R, Zehnder AJB (2000) Water Res 34:3487–3494

    Google Scholar 

  8. Maurer M, Gujer W, Hany R, Bachmann S (1997) Water Res 31:907–917

    Google Scholar 

  9. Brdjanovic D, Van Loosdrecht MCM, Hooijmans CM, Mino T, Alaerts GJ, Heijnen JJ (1998) Appl Microbiol Biotechnol 50:273–276

    Google Scholar 

  10. Pereira H, Lemos PC, Reis MAM, Crespo JPG, Carrondo MJT, Santos H (1996) Water Res 30:2128–2138

    Google Scholar 

  11. Filipe CDM, Daigger GT, Grady Jr. CPL (2001) Biotech Bioeng 76:32–43

    Article  CAS  Google Scholar 

  12. Smolders GJF, Van der Meij J, Van Loosdrecht MCM, Heijnen JJ (1994) Biotech Bioeng 43:461–470

    Google Scholar 

  13. Liu W-T, Mino T, Nakamura K, Matsuo T (1994) J Ferm Bioeng 77:535–540

    Google Scholar 

  14. Bond PL, Erhart R, Wagner M, Keller J, Blackall LL (1999) Appl Environ Microbiol 65:4077–4084

    Google Scholar 

  15. Dionisi D, Majone M, Tandoi V, Beccari M (2001) Ind Eng Chem Res 40:5110–5119

    Google Scholar 

  16. Van Aalst-Van Leeuwen MA, Pot MA, Van Loosdrecht MCM, Heijnen JJ (1997) Biotech Bioeng 55:773–782

    Google Scholar 

  17. Levantesi C, Serafim LS, Crocetti GR, Lemos PC, Rossetti S, Blackall LL, Reis MAM, Tandoi V (2002) Environ Microbiol 4:559–569

    Google Scholar 

  18. Liu W-T, Nakamura K, Matsuo T, Mino T (1997) Water Res 31:1430–1438

    Google Scholar 

  19. Satoh H, Mino T, Matsuo T (1992) Water Sci Technol 26:933–942

    Google Scholar 

  20. Lemos PC, Viana C, Salgueiro EN, Ramos AM, Crespo JPSG, Reis MAM (1998) Enz Microbial Technol 22:662–671

    Google Scholar 

  21. Satoh H, Ramey WD, Koch FA, Oldham WK, Mino T, Matsuo T (1996) Water Sci Technol 34:9–16

    Google Scholar 

  22. Satoh H, Mino T, Matsuo T (1998) Water Sci Technol 37:579–582

    Google Scholar 

  23. Satoh H, Mino T, Matsuo T (1994) Water Sci Technol 30:203–211

    Google Scholar 

  24. Beccari M, Majone M, Massanisso P, Ramadori R (1998) Water Res 32:3403–3413

    Google Scholar 

  25. Beun JJ, Paletta F, Van Loosdrecht MCM, Heijnen JJ (2000) Biotech Bioeng 67:379–389

    Google Scholar 

  26. Beun JJ, Dircks K, Van Loosdrecht MCM, Heijnen JJ (2002) Water Res 36:1167–1180

    Google Scholar 

  27. Dircks K, Henze M, Van Loosdrecht M, Mosbaek H, Aspegren H (2001) Water Res 35:2277–2285

    Google Scholar 

  28. Beccari M, Dionisi D, Giuliani A, Majone M, Ramadori R (2002) Water Sci Technol 43:157–168

    Google Scholar 

  29. Carta F, Beun JJ, Van Loosdrecht MCM, Heijnen JJ (2001) Water Res 35:2693–2701

    Google Scholar 

  30. Beun JJ, Verhoef EV, Van Loosdrecht MCM, Heijnen JJ (2000) Biotech Bioeng 68:496–502

    Google Scholar 

  31. Dionisi D, Majone M, Ramadori R, Beccari M (2001) Water Res 35:2661–2668

    Google Scholar 

  32. Majone M, Beccari M, Dionisi D, Levantesi C, Renzi V (2001) Water Sci Technol 43:151–158

    Google Scholar 

  33. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Biotech Bioeng 43:892–898

    Google Scholar 

  34. Choi J, Lee SY (1999) Appl Environ Microbiol 65:4363–4368

    Google Scholar 

  35. Van Loosdrecht MCM, Heijnen JJ (2002) Water Sci Technol 45:13–23

    Google Scholar 

  36. Dircks K, Beun JJ, Van Loosdrecht M, Heijnen JJ, Henze M (2001) Biotech Bioeng 73:87–94

    Google Scholar 

  37. Murnleitner E, Kuba T, Van Loosdrecht MCM, Heijnen JJ (1997) Biotech Bioeng 54:434–450

    Google Scholar 

  38. Choi J, Lee SY (1997) Bioprocess Eng 17:335–342

    Google Scholar 

  39. Van Wegen RJ, Ling Y, Milddelberg APJ (1998) Trans Inst Chem Engrs A 76:417–426

    Google Scholar 

  40. Lemos PC, Serafim LS, Santos MM, Reis MAM, Santos H (2002) Appl Environ Microbiol 69:241–251

    Google Scholar 

  41. Takabatake H, Satoh H, Mino T, Matsuo T ( 2000) Water Sci Technol 4:351–356

    Google Scholar 

  42. Punrattanasin W, Randall CW, Randall AA (2002) In: Enviro 2002. Proceedings of the Third IWA World Water Congress. IWA, Melbourne

    Google Scholar 

  43. Reis MAM, Lemos PC, Martins MJ, Costa PC, Gonçalves LMD, Carrondo MJT (1991) Bioproc Eng 6:145–151

    Google Scholar 

  44. Van Munch E, Greenfield PF (1998) Water Res 32:2431–2441

    Google Scholar 

  45. Van Munch E, Lant P, Newell R (1999) Water Res 33:2844–2854

    Google Scholar 

  46. Van Munch E, Keller J, Lant P, Newell R (1999) Water Res 33:2757–2768

    Google Scholar 

  47. Sudesh K, Abe H, Doi Y (2000) Prog Polym Sci 25:1503–1555

    Google Scholar 

  48. Lee SY (1996) Biotech Bioeng 49:1-14

    Article  CAS  Google Scholar 

  49. Matsusaki H, Abe H, Doi Y (2000) Biomacromolecules 1:17–22

    Google Scholar 

  50. Serafim LS, Lemos PC, Ramos AM, Crespo JPSG, Reis MAM (2001) Polyhydroxyalkanoates production by activated sludge. In: Chiellini E, Mendes GMH, Braunegg G, Buchert J, Gatenholm P, Ven der Zee M (eds) Biorelated polymers: sustainable polymer science and technology. Kluwer, Dordrecht, pp 147–177

    Google Scholar 

  51. Miguel O, Egibur JL, Iruin JJ (2001) Polymer 42:953–962

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of Fundação para a Ciência e Tecnologia (FCT) under the project POCTI/35675/BIO/2002. Luísa S. Serafim and Paulo C. Lemos acknowledge FCT for grants PRAXIS XXI BD/18287/98 and BPD/2019/99, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. M. Reis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, M.A.M., Serafim, L.S., Lemos, P.C. et al. Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst Eng 25, 377–385 (2003). https://doi.org/10.1007/s00449-003-0322-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-003-0322-4

Key words

Navigation