Skip to main content
Log in

Linear-in-\(\varDelta \) lower bounds in the LOCAL model

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

By prior work, there is a distributed graph algorithm that finds a maximal fractional matching (maximal edge packing) in \(O(\varDelta )\) rounds, independently of \(n\); here \(\varDelta \) is the maximum degree of the graph and \(n\) is the number of nodes in the graph. We show that this is optimal: there is no distributed algorithm that finds a maximal fractional matching in \(o(\varDelta )\) rounds, independently of \(n\). Our work gives the first linear-in-\(\varDelta \) lower bound for a natural graph problem in the standard \(\mathsf{LOCAL }\) model of distributed computing—prior lower bounds for a wide range of graph problems have been at best logarithmic in \(\varDelta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986). doi:10.1016/0196-6774(86)90019-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC 1980), pp. 82–93. ACM Press (1980). doi:10.1145/800141.804655

  3. Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local 2-approximation algorithm for the vertex cover problem. In: Proceedings of the 23rd International Symposium on Distributed Computing (DISC 2009), Lecture notes in computer science, vol. 5805, pp. 191–205. Springer (2009). doi:10.1007/978-3-642-04355-0_21

  4. Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex cover and set cover in anonymous networks. In: Proceedings of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2010), pp. 294–302. ACM Press (2010). doi:10.1145/1810479.1810533

  5. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent Developments. Morgan & Claypool (2013). doi:10.2200/S00520ED1V01Y201307DCT011

  6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pp. 321–330. IEEE Computer Society Press (2012). doi:10.1109/FOCS.2012.60

  7. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast distributed approximations in planar graphs. In: Proceedings of the 22nd International Symposium on Distributed Computing (DISC 2008), Lecture Notes in Computer Science, vol. 5218, pp. 78–92. Springer (2008). doi:10.1007/978-3-540-87779-0_6

  8. Floréen, P., Hassinen, M., Kaasinen, J., Kaski, P., Musto, T., Suomela, J.: Local approximability of max–min and min–max linear programs. Theory Comput. Syst. 49(4), 672–697 (2011). doi:10.1007/s00224-010-9303-6

    Article  MathSciNet  MATH  Google Scholar 

  9. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. J. ACM 60(5), 39:1–39:23 (2013). doi:10.1145/2528405. arXiv:1201.6675

    Article  MathSciNet  MATH  Google Scholar 

  10. Göös, M., Hirvonen, J., Suomela, J.: Linear-in-\(\varDelta \) lower bounds in the LOCAL model. In: Proceedings of the 33rd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC 2014), pp. 86–95. ACM Press (2014). doi:10.1145/2611462.2611467. arXiv:1304.1007

  11. Göös, M., Suomela, J.: No sublogarithmic-time approximation scheme for bipartite vertex cover. In: Proceedings of the 26th International Symposium on Distributed Computing (DISC 2012), Lecture Notes in Computer Science, vol. 7611, pp. 181–194. Springer (2012). doi:10.1007/978-3-642-33651-5_13. arXiv:1205.4605

  12. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of computing maximal matchings. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1998), pp. 219–225. Society for Industrial and Applied Mathematics (1998)

  13. Hańćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of computing maximal matchings. SIAM J. Discrete Math. 15(1), 41–57 (2001). doi:10.1137/S0895480100373121

    Article  MathSciNet  MATH  Google Scholar 

  14. Hasemann, H., Hirvonen, J., Rybicki, J., Suomela, J.: Deterministic local algorithms, unique identifiers, and fractional graph colouring. In: Proceedings of the 19th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2012), Lecture Notes in Computer Science, vol. 7355, pp. 48–60. Springer (2012). doi:10.1007/978-3-642-31104-8_5

  15. Hirvonen, J., Suomela, J.: Distributed maximal matching: greedy is optimal. In: Proceedings of the 31st Annual ACM Symposium on Principles of Distributed Computing (PODC 2012), pp. 165–174. ACM Press (2012). doi:10.1145/2332432.2332464. arXiv:1110.0367

  16. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal matching. Inf. Process. Lett. 22(2), 77–80 (1986). doi:10.1016/0020-0190(86)90144-4

  17. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proceedings of the 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC 2004), pp. 300–309. ACM Press (2004). doi:10.1145/1011767.1011811

  18. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 980–989. ACM Press (2006). doi:10.1145/1109557.1109666

  19. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: lower and upper bounds (2010). arXiv:1011.5470

  20. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In: Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC 2006), pp. 7–15. ACM Press (2006). doi:10.1145/1146381.1146387

  21. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s locality limit. In: Proceedings of the 22nd International Symposium on Distributed Computing (DISC 2008), Lecture Notes in Computer Science, vol. 5218, pp. 394–407. Springer (2008). doi:10.1007/978-3-540-87779-0_27

  22. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992). doi:10.1137/0221015

    Article  MathSciNet  MATH  Google Scholar 

  23. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986). doi:10.1137/0215074

    Article  MathSciNet  MATH  Google Scholar 

  24. Mayer, A., Naor, M., Stockmeyer, L.: Local computations on static and dynamic graphs. In: Proceedings of the 3rd Israel Symposium on the Theory of Computing and Systems (ISTCS 1995), pp. 268–278. IEEE (1995). doi:10.1109/ISTCS.1995.377023

  25. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995). doi:10.1137/S0097539793254571

    Article  MathSciNet  MATH  Google Scholar 

  26. Neumann, B.H.: On ordered groups. Am. J. Math. 71(1), 1–18 (1949). doi:10.2307/2372087

    Article  MathSciNet  MATH  Google Scholar 

  27. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks. Distrib. Comput. 14(2), 97–100 (2001). doi:10.1007/PL00008932

    Article  Google Scholar 

  28. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia (2000)

Download references

Acknowledgments

We thank the anonymous reviewers for their helpful feedback. The combinatorial proof in “Appendix B” is joint work with Christoph Lenzen and Roger Wattenhofer. This work is supported in part by the Academy of Finland, Grants 132380 and 252018, and by the Research Funds of the University of Helsinki. Much of this research was done while the authors were affiliated with the Department of Computer Science, University of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Göös.

Additional information

This work is an extended and revised version of a preliminary conference report [10].

Appendices

Appendix A: Derandomisation

As discussed in Sect. 5.2, unbounded outputs require special care. In this appendix we note that even though Naor and Stockmeyer [25] assume bounded outputs, their result on derandomising local algorithms applies in our setting, too.

Recall that a randomised algorithm is an \(\mathsf{ID }\)-algorithm such that each node has in addition access to a source of random bits. Let \(\mathcal {A}\) be a randomised \(t(\varDelta )\)-time algorithm that computes a maximal FMon graphs of maximum degree \(\varDelta \) or possibly fails with some small probability. Given an assignment of random bit strings \(\rho :V(G)\rightarrow \{0,1\}^*\) to the nodes of a graph \(G\), denote by \(\mathcal {A}^\rho \) the deterministic algorithm that computes as \(\mathcal {A}\), but uses \(\rho \) for randomness.

The proof of Theorem 5.1 in [25] is using the following fact whose proof we reproduce here for convenience.

Lemma 6

For every \(n\), there is an \(n\)-set \(S_n\subseteq \mathbb {N}\) of identifiers and an assignment \(\rho _n:S_n\rightarrow \{0,1\}^*\) such that \(\mathcal {A}^{\rho _n}\) is correct on all graphs that have identifiers from \(S_n\).

Proof

Denote by \(k=k(n)\) the number of graphs \(G\) with \(V(G)\subseteq \{1,\ldots ,n\}\). Let \(X_1,\ldots ,X_q\subseteq \mathbb {N}\) be any \(q\) disjoint sets of size \(n\). Suppose for the sake of contradiction that the claim is false for each \(X_i\). That is, for any assignment \(\rho :X_i\rightarrow \{0,1\}^*\) of random bits, \(\mathcal {A}^\rho \) fails on at least one of the \(k\) many graphs \(G\) with \(V(G)\subseteq X_i\). By averaging, this implies that for each \(i\) there is a particular graph \(G_i\), \(V(G_i)\subseteq X_i\), on which \(\mathcal {A}\) fails with probability at least \(1/k\). Consider the graph \(G\) that is the disjoint union of the graphs \(G_1,\ldots ,G_q\). Since \(\mathcal {A}\) fails independently on each of the components \(G_i\), the failure probability on \(G\) is at least \(1-(1-1/k)^q\). But this probability can be made arbitrarily close to \(1\) by choosing a large enough \(q\), which contradicts the correctness of \(\mathcal {A}\). \(\square \)

The deterministic algorithms \(\mathcal {A}^{\rho _n}\) allow us to again obtain a \(t(\varDelta )\)-time \(\mathsf{OI }\)-algorithm, which establishes the \(\varOmega (\varDelta )\) lower bound for \(\mathcal {A}\). Only small modifications to Sect. 5.4 are needed:

  • Step (i). Instead of the infinite set \(I\subseteq \mathbb {N}\) as previously provided by Lemma 3, we can use the finite Ramsey’s theorem to find arbitrarily large sets \(I_n\subseteq S_n\) (i.e., \(|I_n|\rightarrow \infty \) as \(n\rightarrow \infty \)) with the property that \(\mathcal {A}^{\rho _n}\) fully saturates the nodes of a loopy \(\mathsf{OI }\)-neighbourhood that has identifiers from \(I_n\) (Lemma 4).

  • Step (ii). Then, passing again to sufficiently sparse subsets \(J_n\subseteq I_n\), we can reprove Lemma 5 and Corollary 1, which only require that \(J\) is large enough.

This concludes the lower bound proof for randomised \(\mathsf{LOCAL }\) algorithms.

Appendix B: Combinatorial proof of Lemma 2

In \(T\) there is a unique simple directed path \(x\!\rightsquigarrow \!y\) between any two nodes \(x,y\in V(T)\). We use \(V(x\!\rightsquigarrow \!y)\) and \(E(x\!\rightsquigarrow \!y)\) to denote the nodes and edges of the path. Also, we set \(V_\mathsf{in }(x\!\rightsquigarrow \!y) := V(x\!\rightsquigarrow \!y){\setminus } \{x,y\}\). We will assign to each path \(x\!\rightsquigarrow \!y\) an integer value, denoted \([\![x\!\rightsquigarrow \!y]\!]\), which will determine the relative order of the endpoints.

By definition, in the \(\mathsf{PO }\) model, we are given the following linear orders:

  • Each node \(v \in V(T)\) has a linear order \(\prec _v\) on its incident edges.

  • Each edge \(e \in E(T)\) has a linear order \(\prec _e\) on its incident nodes.

For notational convenience, we extend these relations a little: for \(v \in V_\mathsf{in }(x\!\rightsquigarrow \!y)\) we define \(x\prec _v y \iff e\prec _v e'\), where \(e\) is the last edge on the path \(x\!\rightsquigarrow \!v\) and \(e'\) is the first edge on the path \(v\!\rightsquigarrow \!y\); similarly, for \(e\in E(x\!\rightsquigarrow \!y)\), we define \(x\prec _e y\iff x'\prec _e y'\), where \(e=\{x',y'\}\) and \(x'\) and \(y'\) appear on the path \(x\!\rightsquigarrow \!y\) in this order.

For any statement \(P\), we will use the following type of Iverson bracket notation:

$$\begin{aligned}{}[P] := {\left\{ \begin{array}{ll} +1&{} \text {if }P \text { is true}, \\ -1&{} \text {if }P \text { is false}. \end{array}\right. } \end{aligned}$$

We can now define

$$\begin{aligned}{}[\![x\!\rightsquigarrow \!y]\!]\, := \sum _{e\in E(x\rightsquigarrow y)} [x\prec _e y]\quad +\ \sum _{v\in V_\mathsf{in }(x\rightsquigarrow y)} [x\prec _v y]. \end{aligned}$$
(6)

In particular, \([\![x\!\rightsquigarrow \!x]\!]= 0\). The linear order \(\prec \) on \(V(T)\) is now defined by setting

$$\begin{aligned} x \prec y \iff [\![x\!\rightsquigarrow \!y ]\!]> 0. \end{aligned}$$

See Fig. 12. Next, we show that this is indeed a linear order.

Fig. 12
figure 12

In this example, \([\![u\!\rightsquigarrow \!v ]\!]= +1\), \([\![v\!\rightsquigarrow \!u ]\!]= -1\), and hence \(u \prec v\)

Antisymmetry and totality. Since \([x\prec _v y] = -[y\prec _v x]\) and \([x\prec _e y] = -[y\prec _e x]\), we have the property that

$$\begin{aligned}{}[\![x\!\rightsquigarrow \!y]\!]= -[\![y\!\rightsquigarrow \!x]\!]. \end{aligned}$$

Moreover, if \(x\ne y\), the first sum in (6) is odd iff the second sum in (6) is even. Therefore \([\![x\!\rightsquigarrow \!y]\!]\) is always odd; in particular, it is non-zero. These properties establish that either \(x \prec y\) or \(y \prec x\) (but never both).

Transitivity. Let \(x,y,z \in V(T)\) be three distinct nodes with \(x \prec y\) and \(y \prec z\); we need to show that \(x\prec z\). Denote by \(v \in V(T)\) the unique node in the intersection of the paths \(x\!\rightsquigarrow \!z\), \(z\!\rightsquigarrow \!y\), and \(y\!\rightsquigarrow \!x\).

Viewing the path \(x\!\rightsquigarrow \!z\) piecewise as \(x\!\rightsquigarrow \!v \!\rightsquigarrow \!z\) we write

$$\begin{aligned}{}[\![x\!\rightsquigarrow \!z]\!]= [\![x\!\rightsquigarrow \!v]\!]+ [x\prec _v z] + [\![v\!\rightsquigarrow \!z]\!], \end{aligned}$$

where it is understood that \([x\prec _v z] := 0\) in the degenerate cases where \(v\in \{x,z\}\). Similar decompositions can be written for \(z\!\rightsquigarrow \!y\) and \(y\!\rightsquigarrow \!x\). Indeed, it is easily checked that

$$\begin{aligned}&[\![x\!\rightsquigarrow \!z]\!]+ [\![z\!\rightsquigarrow \!y]\!]+ [\![y\!\rightsquigarrow \!x]\!]\\&\quad = [x\prec _v z] + [z\prec _v y] + [y\prec _v x]. \end{aligned}$$

By assumption, \([\![z\!\rightsquigarrow \!y]\!], [\![y\!\rightsquigarrow \!x]\!]\le -1\), so we get

$$\begin{aligned}{}[\![x\!\rightsquigarrow \!z]\!]\ge 2 + [x\prec _v z] + [z\prec _v y] + [y\prec _v x]. \end{aligned}$$

The only way the right hand side can be negative is if

$$\begin{aligned} = [z\prec _v y]= [y\prec _v x] = -1,\end{aligned}$$

but this is equivalent to having \(z\prec _v x \prec _v y \prec _v z\), which is impossible. Hence \([\![x\!\rightsquigarrow \!z]\!]\ge 0\). But since \(x\ne z\) we must have in fact that \(x \prec z\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göös, M., Hirvonen, J. & Suomela, J. Linear-in-\(\varDelta \) lower bounds in the LOCAL model. Distrib. Comput. 30, 325–338 (2017). https://doi.org/10.1007/s00446-015-0245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-015-0245-8

Keywords

Navigation